
Exercise session 03

Object oriented programming. Classes and access control in
C++.

Advanced Programming - SISSA, UniTS, 2023-2024

Pasquale Claudio Africa

12 Oct 2023

1 / 6

Exercise 1 (1/5)
1. Create a class named DataProcessor with private data members for a data array and its

size. The data array should be represented as a double *data .

2. Implement a constructor that takes an array of floating-point numbers and its size as input
and initializes the class data members.

3. Implement a copy constructor, a copy assignment operator and the destructor.

4. Add a metod n_elements() that returns the number of elements in the array.

5. Test all these functionalities in the main function by creating proper instances of
DataProcessor and displaying the results.

2 / 6

Exercise 1 (2/5)
1. Add methods to compute minimum and maximum values.

2. Add a method to compute the mean (average) of the data.

3. Add a method to compute the standard deviation of the data.

4. Add tests to validate these new functionalities.

3 / 6

Exercise 1 (3/5)
1. Organize the DataProcessor class by separating declarations and definition into separate

header (data_processor.hpp) and source (data_processor.cpp) files.

2. Create a main program file that includes the header and demonstrates the use of the
DataProcessor class for data analysis.

3. Compile the program using the following command:

g++ -Wall -Wpedantic -O3 data_processor.cpp main.cpp -o data_processor

4 / 6

Exercise 1 (4/5)
1. Overload the output stream operator << as a friend function to allow printing the list of

values in the stored data, separated by a comma.

2. Overload the [] operator to allow indexing and accessing individual data elements. This
operator will be used for both read and write access.

 The folder examples contains two examples showing how to safely implement read
and write access operators.

3. Overload the + operator in the DataProcessor class to allow adding two DataProcessor
objects. The result should be a new DataProcessor object containing the element-wise sum
of the data arrays. The operator should also print an error if the two operands do not have the
same size.

4. Add tests to validate these new functionalities.

5 / 6

Exercise 1 (5/5)
1. Ensure the const-correctness of all member variables and methods by adding proper const

qualifiers.

2. Add a static member function get_n_instances() that returns how many instances of
DataProcessor objects are currently active.

3. Implement a free function

double compute_correlation(const DataProcessor &dp1, const DataProcessor &dp2);

that computes the Pearson correlation coefficient between two datasets with the same size.

4. Add tests to validate these new functionalities.

6 / 6

	Page 1
	Exercise session 03
	Object oriented programming. Classes and access control in C++.
	Advanced Programming - SISSA, UniTS, 2023-2024
	Pasquale Claudio Africa
	12 Oct 2023

	Page 2
	Exercise 1 (1/5)

	Page 3
	Exercise 1 (2/5)

	Page 4
	Exercise 1 (3/5)

	Page 5
	Exercise 1 (4/5)

	Page 6
	Exercise 1 (5/5)

