
Exercise session 08

Introduction to CMake.
Optimization, debugging, profiling, testing.

Advanced Programming - SISSA, UniTS, 2023-2024

Pasquale Claudio Africa

23 Nov 2023

1 / 15

CMake

2 / 15

Exercise 1: CMake
1. Following exercises/07/solutions/ex1 , compile muParserX using CMake and write a

CMake script to compile and link the test code ex1.cpp against it.

2. Re-do exercises/07/solutions/ex3 with the help of CMake.

3 / 15

Optimization and profiling

4 / 15

Source

5 / 15

https://doi.org/10.3390/electronics12030754

Memory layout

6 / 15

Data structure alignment
class MyClass
{
 char a; // 1 byte.
 short int b; // 2 bytes.
 int c; // 4 bytes.
 char d; // 1 byte.
};

How data is not stored How data is actually stored

7 / 15

Access patterns and loop tiling (for a row-major matrix)

8 / 15

Examples
The folder examples/optimization contains three examples:

1. data_alignment compares the memory occupation of two objects containing the same data
members but with different data alignment/padding.

2. loop_unrolling implements a function that multiplies all elements in a std::vector by
looping over all its elements and returns the result. The executable compares the
performance with those obtained exploiting loop unrolling.

3. static implements a function that allocates a std::vector and, taking an index as input,
returns the corresponding value. The executable compares the performance with those
obtained by declaring the vector static .

9 / 15

Exercise 2: Optimization
The hints/ex2/ directory contains the implementation of a class for dense matrices organized
as column-major.

Implement Matrix::transpose() , a method to compute .

Implement operator* , a function to compute matrix-matrix multiplication.

Optimize the matrix-matrix multiplication by transposing the first factor before the
computation. Compare the execution speed with the previous implementation.

Use valgrind --tool=callgrind to generate a profiler report.

Generate a coverage report using lcov and genhtml .

10 / 15

Debugging

11 / 15

Examples
The content of examples/debug was inspired by this repository and shows basic techniques for
debugging as well as an introduction to gdb .

Further readings
Defensive programming and debugging .

Cpp undefined behaviour 101

Shocking undefined behaviour in action

12 / 15

https://github.com/cme212/course/tree/master/notes/lecture-01
https://gjbex.github.io/Defensive_programming_and_debugging/
https://mohitmv.github.io/blog/Cpp-Undefined-Behaviour-101/
https://mohitmv.github.io/blog/Shocking-Undefined-Behaviour-In-Action/

Exercise 3: Debugging
The hints/ex3/ directory contains an implementation of a double-linked list class. The class
stores a pointer to the head, and each node (except for the head and the tail, obviously) contains
a pointer to the previous and to the next node.

The implementation contains a lot of errors, namely:

1. Compilation and syntax errors.

2. Runtime errors, including a segmentation fault and a problem in printing the list.

3. Memory leaks.

4. Two possible segmentation faults, not captured by the main .

With the help of gdb and valgrind , solve all these issues and make the code working!

13 / 15

Testing

14 / 15

Exercise 4: Testing
The hints/ex4/ contains a static function to compute the mean of a std::vector .

Following the given directory structure and using Google Test , fill in the missing parts in
tests/mean.cpp to check that the function behaves as expected in all the listed cases.

To run the testsuite type

make test

or

ctest

from the CMake build folder.

15 / 15

https://google.github.io/googletest/

	Page 1
	Exercise session 08
	Introduction to CMake. Optimization, debugging, profiling, testing.
	Advanced Programming - SISSA, UniTS, 2023-2024
	Pasquale Claudio Africa
	23 Nov 2023

	Page 2
	CMake

	Page 3
	Exercise 1: CMake

	Page 4
	Optimization and profiling

	Page 5
	Page 6
	Memory layout

	Page 7
	Data structure alignment
	How data is not stored
	How data is actually stored

	Page 8
	Access patterns and loop tiling (for a row-major matrix)

	Page 9
	Examples

	Page 10
	Exercise 2: Optimization

	Page 11
	Debugging

	Page 12
	Examples
	Further readings

	Page 13
	Exercise 3: Debugging

	Page 14
	Testing

	Page 15
	Exercise 4: Testing

