
Exercise session 10

Object-oriented programming. Classes, inheritance and
polymorphism. Modules and packages.

Advanced Programming - SISSA, UniTS, 2023-2024

Pasquale Claudio Africa

07 Dec 2023

1 / 6

Exercise 1: generators for the solution of ODEs
Solving the differential equation by applying the explicit Euler method results in the
recursion:

1. Write a generator that computes the solution values for a given initial value and a
given value of the time step .

2. Implement a generator decorator step_counter that counts how many time steps have been
performed.

2 / 6

Exercise 2: Polynomial class (1/3)
You are tasked with implementing a Python class called Polynomial that represents polynomials.
The class should have the following features:

1. Constructor: The class should have a custom constructor that takes variable coefficients as
arguments. The coefficients should be provided in increasing order of degree (

).

2. String representation: Implement the __repr__ method to provide a string representation
of the polynomial. The string should display the polynomial in a human-readable form. For
example, for the polynomial with coefficients [1, 2, 3] , the string representation should be
"1 + 2x + 3x^2" .

3. Addition and multiplication: Implement the __add__ and __mul__ methods to allow
addition and multiplication of polynomials. The methods should return a new polynomial.

3 / 6

Exercise 2: Polynomial class (2/3)

4. Class method to create from string: Implement a @classmethod called from_string that
creates a Polynomial object from a string representation. Assume that the input string will be a
polynomial in the form of "a + bx + ... + cx^(n-1) + dx^n" .

5. The base class Polynomial should be extended by two subclasses:

StandardPolynomialEvaluator : Implements the standard polynomial evaluation
method:

HornerPolynomialEvaluator : Implements Horner's rule for polynomial evaluation:

4 / 6

Exercise 2: Polynomial class (3/3)

6. Implement a measure_time decorator, which measures the time taken by a function to
execute.

7. Instantiate objects of both StandardPolynomialEvaluator and
HornerPolynomialEvaluator with the same set of coefficients.

8. Apply the measure_time decorator to a function that takes a PolynomialEvaluator object
and evaluates it at a given list of points.

9. Evaluate the polynomial at the same 1000 points using both methods and compare the
results. Raise an assertion error if the results do not match.

10. Use the decorated function to evaluate the polynomial using both the standard method and
Horner's rule, and observe the logged results and execution times.

5 / 6

Exercise 3: modular data processing package
Refactor the existing data processing code provided in hints/ex3.py into a modular package
with multiple modules, functions, classes.

1. Refactoring: Refactor the code into a modular package dataprocessor with the following
modules:

__init__.py : Entry point for the package, import necessary functions, classes, and
data. Implement __all__ .

operations.py : Contains functions for data processing and analysis.

data_analysis.py : Introduce a class DataAnalyzer that encapsulates data processing
and analysis functionalities.

2. Documentation: Provide docstrings for functions and classes. Explain the purpose and
usage of each function and configuration option.

3. Test cases: Create a test main.py script to demonstrate the usage of the package.

6 / 6

	Page 1
	Exercise session 10
	Object-oriented programming. Classes, inheritance and polymorphism. Modules and packages.
	Advanced Programming - SISSA, UniTS, 2023-2024
	Pasquale Claudio Africa
	07 Dec 2023

	Page 2
	Exercise 1: generators for the solution of ODEs

	Page 3
	Exercise 2: Polynomial class (1/3)

	Page 4
	Exercise 2: Polynomial class (2/3)

	Page 5
	Exercise 2: Polynomial class (3/3)

	Page 6
	Exercise 3: modular data processing package

