
Exercise session 12

Integrating C++ and Python codes.

Advanced Programming - SISSA, UniTS, 2023-2024

Pasquale Claudio Africa

21 Dec 2023

1 / 5

Exercise 1: binding classes and magic methods
Provide Python bindings using pybind11 for the code provided as the solution to exercise 1 from
session 03.

1. Bind the DataProcessor class and its member functions. Using a lambda function, expose a
constructor taking a Python list as an input, to be converted to a std::vector and invoking
the actual constructor.

2. Provide Python bindings for the addition (__add__), the read (__getitem__) and write
(__setitem__) access, and the output stream (__str__) operators.

3. Package the Python module with the compiled C++ library using setuptools .

4. Write a Python script to replicate the functionalities implemented in the main.cpp file.

2 / 5

Exercise 2: binding class templates and exceptions
Provide Python bindings using pybind11 for the code provided as the solution to exercise 2 from
session 05.

1. Modify the NewtonSolver::solve() method in order to throw a std::runtime_error
exception instead of returning NaN when failed to converge to a root.

2. Bind the NewtonClass class and its member functions, providing explicit instantiations for
double and std::complex<double> numbers. The Python interface should provide

consistent default arguments. Python bindings should be implemented in a separate
newton_py.cpp file. Translate the std::runtime_error C++ exception to a RuntimeError

Python exception.

3. Use CMake to setup the build process.

4. Write a Python script to replicate the functionalities implemented in the main.cpp file.

5. Verify that exception handling works properly.

3 / 5

Exercise 3: binding with external libraries
1. Implement C++ functions using the Eigen library to perform matrix-matrix multiplication and

matrix inversion.

2. Provide Python bindings using pybind11 for the code implemented.

3. Use CMake and setuptools to setup the build process.

4. Write a Python script to test the performance of the Eigen-based operations. Implement a
log_execution_time decorator to print the execution time of a function.

5. Compare the execution time of these operations to equivalent operations in NumPy (e.g.,
numpy.matmul for multiplication and numpy.linalg.inv for inversion). Use a large matrix

(e.g.,) of random integers between 0 and 1000 for the test.

4 / 5

Exercise 4: code obfuscation
What's the output resulting from the execution of the code contained in wish.cpp ?

5 / 5

	Page 1
	Exercise session 12
	Integrating C++ and Python codes.
	Advanced Programming - SISSA, UniTS, 2023-2024
	Pasquale Claudio Africa
	21 Dec 2023

	Page 2
	Exercise 1: binding classes and magic methods

	Page 3
	Exercise 2: binding class templates and exceptions

	Page 4
	Exercise 3: binding with external libraries

	Page 5
	Exercise 4: code obfuscation

