In rare instances, a function returns a reference to an object passed by reference. This is usually done when concatenation is desired, with the streaming operator being a typical example.
std::ostream &operator<<(std::ostream &os, const MyClass &obj)
{
// ...
return os; // Return the stream.
}
This enables concatenation like so:
std::cout << x << " concatenated with " << y;
In the declaration of a function, you can provide default values for the rightmost parameters.
std::vector<double> cross_prod(const std::vector<double> &a,
const std::vector<double> &b,
const unsigned int ndim = 2);
For instance:
a = cross_prod(c, d); // This sets ndim to 2.
int fun(int i);
double fun(const double &z);
// double fun(double y); // Error: ambiguous!
auto x = fun(1); // Calls fun(int).
auto y = fun(1.0); // Calls fun(const double &).
The function that gives the best match of the argument types is chosen. Beware of possible ambiguities and implicit conversions!
A callable object refers to an object that can be called as if it were a function, i.e., using the function call operator operator()
. Callable objects include:
operator()
.std::function
generalizes the concept of a function pointer.double integrand(double x);
// Pointer to a function taking a double as an input and returning a double.
using f_ptr = double (*)(double);
// Or: typedef double (*f_ptr)(double);
double integrate(double a, double b, const f_ptr fun);
double I = integrate(0, 3.1415, integrand); // Passing function as a pointer.
f_ptr my_sin = std::sin; // Assigning a function pointer.
I = integrate(0, 3.1415, my_sin);
The name of the function is interpreted as a pointer to that function. However, you may precede it by &
: f_ptr f = &integrand
.
We will see in a while a safer and more general alternative to function pointers, the function wrapper std::function
of the STL.
You can use function pointers to select and call functions at runtime based on user input or other conditions.
int add(int a, int b) { return a + b; }
int subtract(int a, int b) { return a - b; }
int main() {
int (*operation)(int, int); // 'operation' is a function pointer.
if (user_input == "add") {
operation = add;
} else {
operation = subtract;
}
const int result = operation(10, 5); // Calls either Add or Subtract based on user input.
return 0;
}
std::vector<Shape*> shapes;
shapes.push_back(new Circle(3.0));
shapes.push_back(new Rectangle(2.0, 4.0));
shapes.push_back(new Circle(2.5));
// Define a member function pointer for the area function.
double (Shape::*area_fun)() const = &Shape::area;
for (const auto shape : shapes) {
const double area = (shape->*area_fun)();
std::cout << "Area: " << area << std::endl;
}
// Cleanup allocated objects.
for (auto shape : shapes) {
delete shape;
}
A function object or functor is a class object which overloads the call operator (operator()
). It has semantics very similar to that of a function:
class Cube {
public:
double operator()(const double &x) const { return x * x * x; }
};
Cube cube{}; // A function object.
auto y = cube(3.4); // Calls Cube::operator()(3.4).
auto z = Cube{}(8.0); // I create the functor on the fly.
If the call operator returns a bool
, the function object is a predicate. If a call to the call operator does not change the data members of the object, you should declare operator()
as const
(as with any other method).
A characteristic of a functor is that it may have a state, so it can interact with other objects and store additional information to be used to calculate the result.
class Calculator {
public:
int result = 0;
class Add {
public:
Calculator& calc;
Add(Calculator& c) : calc(c) {}
void operator()(int x, int y) { calc.result = x + y; }
};
};
Calculator calc;
Calculator::Add add(calc);
add(5, 3); // Result is stored in calc.result;
Under the header <functional>
, you find a lot of predefined functors.
std::vector<int> in = {1, 2, 3, 4, 5};
std::vector<int> out;
std::transform(in.begin(), in.end(), // Source.
std::back_inserter(out), // Destination.
std::negate<int>());
const double prod = std::accumulate(in.begin(), in.end(), 1.0, std::multiplies<int>());
Now out = {-1, -2, -3, -4, -5}.
.
std::negate<type>
is a unary functor provided by the standard library.
std::back_inserter<type>
inserts the transformed elements at the end (back) of vector j
.
Functor | Description |
---|---|
plus<T> , minus<T> |
Addition/Subtraction (Binary) |
multiplies<T> , divides<T> |
Multiplication/Division (Binary) |
modulus<T> |
Modulus (Unary) |
negate<T> |
Negative (Unary) |
equal_to<T> , not_equal_to<T> |
(Non-)Equality Comparison (Binary) |
greater , less , greater_equal , less_equal |
Comparison (Binary) |
logical_and<T> , logical_or<T> , logical_not<T> |
Logical AND/OR/NOT (Binary) |
For a full list, have a look at this web page.
We have a very powerful syntax to create short (and inlined) functions quickly: the lambda expressions (also called lambda functions or simply lambdas). They are similar to Matlab anonymous functions, like f = @(x) x^2
.
auto f = [] (double x) { return 3 * x; }; // f is a lambda function.
auto y = f(9.0); // y is equal to 27.0.
Note that I did not need to specify the return type in this case, the compiler deduces it as decltype(3 * x)
, which returns double
.
The capture specification allows you to use variables in the enclosing scope inside the lambda, either by value (a local copy is made) or by reference.
[]
: Captures nothing.[&]
: Captures all variables by reference.[=]
: Captures all variables by making a copy.[y]
: Captures only y
by making a copy.[&y]
: Captures only y
by reference.[=, &x]
: Captures any referenced variable by making a copy, but capture variable x
by reference.[this]
: Captures the this
pointer of the enclosing class object.[*this]
: Captures a copy of the enclosing class object.[this]
With [this]
, we get the this
pointer to the calling object:
class MyClass {
public:
void compute() const {
auto prod = [this](double a) { x *= a; };
std::for_each(v.begin(), v.end(), prod);
}
private:
double x = 1.0;
std::vector<double> v;
};
MyClass c;
double res = c.compute();
Here, compute()
uses the lambda prod
that changes the member x
. To be more explicit, you can write this->x *= a;
.
And now the catch all function wrapper. The class std::function<>
declared in <functional>
provides polymorphic wrappers that generalize the notion of a function pointer. It allows you to use any callable object as first-class objects.
int add(int a, int b) {
return a + b;
}
std::function<int(int, int)> func = add;
const int result = func(2, 3);
Function wrappers are very useful when you want to have a common interface to callable objects.
Function wrappers introduce a little overhead, since the callable object is stored internally as a pointer, but they are extremely flexible, and often the overhead is negligible.
class Shape {
public:
virtual double area() const = 0;
};
class Circle : public Shape {
public:
Circle(double radius) : radius(radius) {}
double area() const override { return 3.14159265359 * radius * radius; }
private:
double radius;
};
auto compute_area = [](const Shape& s) { return s.area(); };
// 'auto' here resolves to std::function<double(const Shape&)>.
Circle circle(5.0);
std::cout << "Circle area: " << compute_area(circle) << std::endl;
std::function
can wrap any kind of callable object.
int func(int, int); // A function.
class F2 { // A functor.
public:
int operator()(int, int) const;
};
// A vector of functions.
std::vector<std::function<int(int, int)>> tasks;
tasks.push_back(func); // Wraps a function.
tasks.push_back(F2{}); // Wraps a functor.
tasks.push_back([](int x, int y){ return x * y; }); // Wraps a lambda.
for (auto i : tasks)
std::cout << i(3, 4) << endl;
It prints the result of func(3, 4)
, F2{}(3, 4)
, and 12
(
std::bind
and function adaptersstd::bind
provides flexibility and reusability in code by decoupling function logic from its arguments and context, making it easier to work with functions as first-class objects.
int add(int a, int b) {
return a + b;
}
// Create a new function based on 'add' where argument 1 is set equal to 5.
std::function<int(int)> add5 = std::bind(add, 5, std::placeholders::_1);
const int result = add5(3);
In modern C++, lambda functions often offer a more concise and readable alternative to std::bind
, which still remains valuable for complex binding scenarios or when you need to reuse a set of bound arguments.
Consider the following example:
bool less_than(char x1, char x2) {
return (x1 < x2);
}
bool less_than(double x1, double x2) {
return (x1 < x2);
}
// ...
You could end up with multiple overloads of the same function: they all have the same implementation, but only differ by few details (such as argument types).
template
keyword, followed by type parameters enclosed in angle brackets.template <typename T>
bool less_than(T x1, T x2) {
return (x1 < x2);
}
template <typename T>
T add(T a, T b) {
return a + b;
}
const int result1 = add<int>(5, 3);
const int result2 = add(5, 3); // T automatically deduced as int.
const double result3 = add<double>(2.5, 3.7);
const double result4 = add(2.5, 3.7); // T automatically deduced as double.
You can give defaults to the rightmost parameters.
template <typename T, typename U = double>
multiply_and_add(T a, U b, T c) {
return a * b + c;
}
// Uses default type double for the second parameter.
const int result1 = multiply_and_add(5, 2.5, 3);
// Uses double for both 'T' and 'U'.
const double result2 = multiply_and_add(2.5, 3.7, 1.2);
// Uses float for the first parameter, int for the second.
const float result3 = multiply_and_add<float, int>(2.5, 3, 1.0);
Template specialization allows you to define different behavior for specific template arguments.
template <typename T>
T max(T a, T b) {
return (a > b) ? a : b;
}
// When 'T' is 'char', this version is invoked.
template <>
char max(char a, char b) {
return std::toupper(a) > std::toupper(b) ? a : b; // max('A', 'b') is 'b'.
}
The following function works for any type T
for which operator+
is defined.
For instance, this function can concatenate a vector of strings.
template <typename T>
T vector_sum(const std::vector<T>& vec) {
// Initialize sum using T's default constructor
// (e.g., 0 for numbers, empty for strings.
T sum{};
for (const T& elem : vec) {
sum += elem;
}
return sum;
}
Templates serve as models for generating functions (or classes) once the template parameters are associated with actual types or values at the instance of the template.
This has two important implications:
Actual compilation occurs only when the template is instantiated (i.e., when it is actually used in your code). Only then can the compiler deduce the template arguments and have the necessary information to produce the machine code.
Thus, some compilation errors may only appear when the template is used!
You can give defaults to the rightmost parameters (this applies also).
A template parameter may also be an integral value.
template <int N, int M = 3>
constexpr int Multiply() {
return N * M;
}
constexpr int result1 = Multiply<5>(); // Calculates 5 * 3 at compile-time.
constexpr int result2 = Multiply<2, 7>(); // Calculates 2 * 7 at compile-time.
Only integral types can be used (e.g., integers, enumerations, pointers, ...).
constexpr
can be applied to variables, functions, and constructors, to ensure that they are evaluated at compile time.
template <typename T>
class ClassName { /* ... */ };
template <typename T>
class List {
public:
// ...
private:
T value;
List *next;
};
List<int> list_int; // T is int.
List<double> list_double; // T is double.
// ...
Template specialization allows you to define different behavior for specific template arguments.
template <typename T>
class Vector {
// Implementation of a dynamic array for type T.
};
// Partial specialization for 'std::string'.
template <>
class Vector<std::string> {
// Specialized behavior for strings.
};
Partial specialization refines specialized behavior for specific subsets of template arguments.
// Generic template
template <typename T, int N>
class Array {
private:
T data[N];
};
// Partial specialization for arrays of size 1.
template <typename T>
class Array<T, 1> {
private:
T element; // No need to store an array for a single variable!
};
Array<int, 3> arr1; // Uses the generic template for arrays of size 3
Array<char, 1> arr2; // Uses the partially specialized template for arrays of size 1
Template aliases are a versatile feature that simplifies code by allowing you to create more concise and expressive names for complex template types.
template <typename T, int N>
class Array {
private:
T data[N];
};
// Template alias to create an array of integers.
template <int N>
using IntArray = Array<int, N>;
IntArray<5> arr; // Creates an array of integers with 5 elements.
template <typename T>
class Stack {
public:
void push(const T& value) { elements.push_back(value); }
T pop() {
if (elements.empty()) {
std::cerr << "Stack is empty" << std::endl;
std::exit(1);
}
T top = elements.back();
elements.pop_back();
return top;
}
private:
std::vector<T> elements;
};
The compiler produces the code corresponding to function templates and class template members that are instantiated in each translation unit.
It means that all translation units that contain, for instance, an instruction of the type std::vector<double> a;
produce the machine code corresponding to the default constructor of a std::vector<double>
. If we then have a.push_back(5.0)
, the code for the push_back
method is produced, and so on.
If the same is true in other compilation units, the same machine code is produced several times. It is the linker that eventually produces the executable by selecting only one instance.
Template definitions need to be available at the point of instantiation. When a template is used with specific type arguments, the compiler needs to see the template definition to generate the code for that particular instantiation. Placing the template definition in a source file would make it unavailable for instantiation in other source files.
If you place template definitions in source files and use the template in multiple source files, you may encounter linker errors due to multiple definitions of the same template. Placing the template definitions in a header file ensures that the definition is available for all source files that include it, and the linker can consolidate the definitions as needed.
Leave everything in a header file. However, if the functions/methods are long, it may be worthwhile, for the sake of clarity, to separate definitions from declarations. You can put declarations at the beginning of the file and only short definitions. Then, at the end of the file, add the long definitions for readability.
Separate declarations (module.hpp
) and definitions (module.tpl.hpp
) when templates are long and complex. Then add #include "module.tpl.hpp"
at the end of module.hpp
.
Explicitly instantiation for a specific list of types. Only in this case, definitions can go to a source file. But if you instantiate a template for other types not explicitly instantiated, the compiler will not have access to the definition, leading to linker errors.
We can tell the compiler to produce the code corresponding to a template function or class using explicit instantiation. If a source file contains, for instance:
template double func(const double &);
template class MyClass<double>;
template class MyClass<int>;
then the corresponding object file will contain the code corresponding to the template function double func<T>(const T &)
with T=double
and that of all methods of the template class MyClass<T>
with T=double
and T=int
.
This can be useful to save compile time when debugging template classes (since the code for all class methods is generated).
auto
keywordauto
keyword simplifies code and improves readability.auto sum1 = add(5, 3); // int
auto sum2 = add(2.5, 3.7); // double
auto sum3 = add(1.0f, 2.0f); // float
Type deduction with auto
is particularly useful when you want to write more generic code that adapts to different data types without explicitly specifying them.
auto
!this
in templates (1/2)In a class template, derived names are resolved only when a template class is instantiated (only then the compiler knows the actual template argument). Other names are resolved immediately.
void my_fun() { ... }
template <typename T> class Base {
public:
void my_fun(); // Not a good idea!
};
template <typename T>
class Derived : Base<T> {
public:
void foo() { my_fun(); ... } // Which 'myfun'?
};
In this case, the free function my_fun()
is used.
this
in templates (2/2)Solution: use this
:
template <typename T>
class Derived : Base<T> {
public:
void foo() { this->my_fun(); ... }
}
or the fully-qualified name:
template <typename T>
class Derived : Base<T> {
public:
void foo() { Base<T>::my_fun(); ... }
}
In this case, the compiler understands that my_fun()
depends on the template parameter T
and will resolve it only at the instance of the template class.
template <typename T, template <typename> class C = std::complex>
class MyClass {
private:
C<T> a;
};
MyClass<double, std::vector> x; // 'a' is a std::vector<double>.
MyClass<float> x; // 'a' is a std::complex<float>.
This feature allows to write expressions like std::vector<std::complex<double>>
.
template <int N>
class Fibonacci {
public:
static constexpr int value = Fibonacci<N - 1>::value + Fibonacci<N - 2>::value;
};
template <>
class Fibonacci<0> {
public:
static constexpr int value = 0;
};
template <>
class Fibonacci<1> {
public:
static constexpr int value = 1;
};
constexpr int n = Fibonacci<10>::value; // Calculated at compile-time.
template <typename T>
class has_print {
public:
template <typename U>
static std::true_type test(decltype(U::print)*);
template <typename U>
static std::false_type test(...);
static constexpr bool value = decltype(test<T>(0))::value;
};
class MyType {
public:
void print() {}
};
std::cout << std::boolalpha;
std::cout << has_print<MyType>::value << std::endl; // true
std::cout << has_print<int>::value << std::endl; // false
...
syntax is used to define them.template <typename T>
T sum(T value) {
return value;
}
template <typename T, typename... Args>
T sum(T first, Args... rest) {
// Consume the first argument, then recurse over remaining arguments.
return first + sum(rest...);
}
template <typename Derived>
class Shape {
public:
double area() {
return static_cast<Derived*>(this)->area();
}
};
class Circle : public Shape<Circle> {
public:
double area() {
// Compute area of a circle.
}
};
Circle c; c.area();
CRTP allows the Shape
class to know the interface of its derived class at compile time, enabling static (compile-time) polymorphism and avoiding runtime overhead.
#include <type_traits>
template <typename T>
void process_type(T value) {
if constexpr (std::is_integral_v<T>) {
// Process integral types.
} else if constexpr (std::is_floating_point_v<T>) {
// Process floating-point types.
} else {
// Default behavior.
}
}
if constexpr
available since C++17. It evaluates conditions at compile-time.