
Exercise session 06

The Standard Template Library, smart pointers and move
semantics.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

11 Nov 2024

1 / 11

Exercise 1: Monte Carlo estimate of
In this exercise, you will perform a Monte Carlo simulation to estimate .

1. Consider the square and the quarter-circle centered at with radius .

2. Generate random points within the square.

3. Count how many of these random points fall within the quarter-circle.

4. After generating a sufficient number of random points, you can estimate

To improve estimation accuracy, try to increase the number of random points in your simulation.

2 / 11

Exercise 2: std::pair
Create a MyPair template class that mimics std::pair , holding two elements of any type.
Implement member variables first and second , with constructors for default and custom
initialization. Overload operator== , operator!= , and operator< for equality and
lexicographical comparison. Test your implementation using various data types such as int,
double, and std::string.

3 / 11

Exercise 3: std::set (1/2)
In a building security system, door locks are opened by entering a four-digit access code into a
keypad. The access code's validation process is handled through an Access object with the
following interface:

class Access
{
public:
 void activate(unsigned int code);
 void deactivate(unsigned int code);
 bool is_active(unsigned int code) const;
};

Each employee is assigned a unique access code, which can be activated using the activate()
function. When an employee leaves the company, their access code can be deactivated using the
deactivate() function.

4 / 11

Exercise 3: std::set (2/2)
Your task is to implement the Access class as described above. Write a test program that
accomplishes the following tasks:

1. Create an instance of the Access object.

2. Activate the access codes 1234, 9999, and 9876.

3. Prompt the user to enter an access code, and read the code from the console.

4. Inform the user whether the door opens successfully.

5. Repeat the last two steps until the door successfully opens.

6. Deactivate the code that worked. Also, deactivate the code 9999 and activate the code 1111.

7. Repeat steps 3 and 4 until the door successfully opens.

5 / 11

Exercise 4: std::map (1/2)
In the previous exercise, the customer using the security system wants to associate an access
level with each access code. Users with higher access levels should be able to open doors to
more security-sensitive areas of the building compared to users with lower access levels. Start
with your solution from the previous exercise and make the following modifications to the Access
class:

class Access
{
public:
 void activate(unsigned int code, unsigned int level);
 void deactivate(unsigned int code);
 bool is_active(unsigned int code, unsigned int level) const;
};

The is_active() function should return true if the specified access code has an access level
greater than or equal to the specified access level. If the access code is not active at all, it should
return false . 6 / 11

Exercise 4: std::map (2/2)
Now, update the main program to perform the following tasks:

1. After creating an instance of the Access object, activate code 1234 with access level 1, code
9999 with access level 5, and code 9876 with access level 9.

2. Prompt the user to enter an access code, and read the code from the console.

3. Assuming a door requires access level 5 for entry, print whether it opened successfully.

4. Repeat the last two steps until the door opens.

5. Deactivate the code that worked, change the access level of code 9999 to 8, and activate
code 1111 with access level 7.

6. Prompt the user for an access code, read the code from the console.

7. Assuming a door requires access level 7 for entry, print whether it opened successfully.

8. Repeat the last two steps until the door opens.

7 / 11

Exercise 5: STL containers and algorithms
1. Generate a vector: Create a vector named random_numbers that contains 100 random

integers between 0 and 9.

2. Sort the vector: Create a new vector named sorted_numbers by sorting the
random_numbers vector in ascending order, with repetitions.

3. Remove duplicates while sorting: Create a new vector named sorted_unique_numbers by
sorting the random_numbers vector and removing duplicate entries.

4. Remove duplicates without sorting: Create a new vector named
unsorted_unique_numbers by printing unique entries from the random_numbers in the same

order they appear, without repetitions.

8 / 11

Exercise 6: Word frequency analysis
The file input.txt contains a list of random complete sentences in English. Develop a C++
program that reads the file, calculates the frequency of each word in the text, and outputs the
word-frequency pairs to a new file in a dictionary format.

Write a C++ program to process the input text file by splitting it into words and counting the
occurrences of each unique word. Spaces and punctuation should be discarded.

The program should generate a new file (named output.txt) containing the word-frequency
pairs in a dictionary format. Each line in the output file should consist of a word followed by its
frequency, separated by a colon or any other suitable delimiter.

(Bonus): sort the output by frequency, in descending order. If two words have the same frequency,
then sort them alphabetically.

9 / 11

Exercise 7: Move semantics for efficient data transfers
Define a class Vector that represents a one-dimensional vector of double values, stored as a
raw pointer double *data .

1. Implement a move constructor for the Vector class that transfers ownership of the
underlying data from the source vector to the destination vector. The move constructor should
ensure that the source vector's data is no longer accessible after the transfer.

2. Define a copy and a move assignment operator for the Vector class that allows for the
efficient transfer of ownership of the underlying data from one Vector object to another. Similar
to the move constructor, the move assignment operator should ensure that the source
vector's data is no longer accessible after the transfer.

3. Compare the performance of copying and moving large vectors using both copy semantics
and move semantics. Measure the time taken to copy and move vectors by increasing the
input size from to elements. Analyze the results and observe the performance gain
achieved by using move semantics. 10 / 11

Exercise 8: Smart pointers with polymorphism
Create a C++ program that demonstrates how std::unique_ptr and std::shared_ptr can be
used with polymorphism.

Create a base class Base with a virtual method void display() .

Create two derived classes Derived1 and Derived2 that override the display() method.

Use std::unique_ptr and std::shared_ptr to manage instances of Base that actually
point to Derived objects.

Demonstrate polymorphic behavior by calling display() through the smart pointers.

11 / 11

	Page 1
	Exercise session 06
	The Standard Template Library, smart pointers and move semantics.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	11 Nov 2024

	Page 2
	Exercise 1: Monte Carlo estimate of

	Page 3
	Exercise 2: std::pair

	Page 4
	Exercise 3: std::set (1/2)

	Page 5
	Exercise 3: std::set (2/2)

	Page 6
	Exercise 4: std::map (1/2)

	Page 7
	Exercise 4: std::map (2/2)

	Page 8
	Exercise 5: STL containers and algorithms

	Page 9
	Exercise 6: Word frequency analysis

	Page 10
	Exercise 7: Move semantics for efficient data transfers

	Page 11
	Exercise 8: Smart pointers with polymorphism

