
Exercise session 07

Introduction to GNU Make. Libraries: building and use.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

18 Nov 2024

1 / 20

Introduction to GNU Make

2 / 20

Introduction
Prerequisites

Ensure the make program is installed by checking make --version . If not installed, use package
managers such as apt on Unix or Homebrew on macOS. Additionally, have a C++ compiler like
g++ or clang++ ready for compilation.

3 / 20

https://formulae.brew.sh/formula/make

Getting started
Let's start with a simple C++ program consisting of three files:

math.hpp

math.cpp

main.cpp

Manual compilation

g++ -c -I. -std=c++17 -Wall -Wpedantic -Werror main.cpp math.cpp
g++ -Wall -Wpedantic -Werror main.o math.o -o main

Alternatively, in a single line:
g++ -I. -Wall -Wpedantic -Werror main.cpp math.cpp -o main

This process involves creating object files and linking them to generate the executable. Now, let's
simplify this with a Makefile.

4 / 20

Definitions

In a Makefile, a target represents the desired output or action. It can be an executable, an
object file, or a specific action like "clean."

Prerequisites are files or conditions that a target depends on. If any of the prerequisites have
been modified more recently than the target, or if the target does not exist, the associated
recipe is executed.

A recipe is a set of shell commands that are executed to build or update the target. Recipes
follow the prerequisites and are indented with a <TAB> character. Each line in the recipe
typically represents a separate command.

5 / 20

Creating a basic Makefile for C++
Putting it all together:

main: main.cpp math.cpp
g++ -I. -Wall -Wpedantic -Werror main.cpp math.cpp -o main

Target (main): The executable we want to create.

Prerequisites (main.cpp math.cpp): The source files required to build the target.

Recipe (g++ [...] main.cpp math.cpp -o main): The shell command to compile (g++)
and link (-o main) the source files into the executable (main).

6 / 20

Variables for clarity
Enhance readability and maintainability by using variables:

CXX=g++
CPPFLAGS=-I.
CXXFLAGS=-std=c++17 -Wall -Wpedantic -Werror

main: main.cpp math.cpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) main.cpp math.cpp -o main

CXX: Compiler variable.

CPPFLAGS: Preprocessor flags variable.

CXXFLAGS: Compiler flags variable.

7 / 20

Automatic dependency generation
CXX=g++
CPPFLAGS=-I.
CXXFLAGS=-std=c++17 -Wall -Wpedantic -Werror
DEPS=math.hpp

%.o: %.cpp $(DEPS)
$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) $< -o $@

main: main.o math.o
$(CXX) $(CXXFLAGS) $^ -o $@

clean:
rm -f *.o main

%.o : A generic rule for creating files with .o extension.

$@ , $< , $^ : Automatic variables representing the target, the first prerequisite, and all
prerequisites, respectively.

8 / 20

Phony targets
Define phony targets for non-file related tasks:

.PHONY: all clean

all: main

main: main.o math.o
$(CXX) $(CXXFLAGS) $^ -o $<

clean:
rm -f *.o main

.PHONY : Marks targets that don't represent files.

all : Default target.

9 / 20

Variables for source files
CXX=g++
CPPFLAGS=-I.
CXXFLAGS=-std=c++17 -Wall -Wpedantic -Werror
DEPS=math.hpp
SRC=$(wildcard *.cpp)
OBJ=$(SRC:.cpp=.o)

.PHONY: all clean

all: main

main: $(OBJ)
$(CXX) $(CXXFLAGS) $^ -o $@

%.o: %.cpp $(DEPS)
$(CXX) -c $(CXXFLAGS) $< -o $@

clean:
rm -f *.o main

10 / 20

Building a library and linking against it
Suppose we have a simple C++ library with two files

math.hpp

math.cpp

Additionally, we have a program, main.cpp , that uses functions from this library.

Now, let's create a Makefile to build the library and another one to link our program against it.

11 / 20

Makefile to build a library (1/2)
CXX=g++
CPPFLAGS=-I.
CXXFLAGS=-std=c++17 -Wall -Wpedantic -Werror

SRC=math.cpp
OBJ=$(SRC:.cpp=.o)
OBJ_fPIC=$(SRC:.cpp=.fpic.o)
DEPS=math.hpp

LIB_NAME_STATIC=libmath.a
LIB_NAME_SHARED=libmath.so

all: static shared

static: $(LIB_NAME_STATIC)
shared: $(LIB_NAME_SHARED)

12 / 20

Makefile to build a library (2/2)
$(LIB_NAME_STATIC): $(OBJ)

ar rcs $@ $^

$(LIB_NAME_SHARED): $(OBJ_fPIC)
$(CXX) $(CXXFLAGS) -shared $^ -o $@

%.fpic.o: %.cpp $(DEPS)
$(CXX) -c -fPIC $(CPPFLAGS) $(CXXFLAGS) $< -o $@

%.o: %.cpp $(DEPS)
$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) $< -o $@

clean:
rm -f *.o $(LIB_NAME_STATIC) $(LIB_NAME_SHARED)

13 / 20

Makefile to link against a library
CXX=g++
CPPFLAGS=-Imath/
CXXFLAGS=-std=c++17 -Wall -Wpedantic -Werror
LDFLAGS=-Wl,-rpath,math/ -Lmath/ # For dynamic linking.
LDFLAGS=-Lmath/ -static # For static linking.
LDLIBS=-lmath

SRC=main.cpp
OBJ=$(SRC:.cpp=.o)

all: main

main: $(OBJ)
$(CXX) $(CXXFLAGS) $^ $(LDFLAGS) $(LDLIBS) -o $@

%.o: %.cpp
$(CXX) -c $< $(CPPFLAGS) $(CXXFLAGS) -o $@

clean:
rm -f *.o main

14 / 20

Summary (1/2)
make efficiently determines the need to regenerate a target by checking its existence and the up-

to-dateness of prerequisite files. This feature enables it to avoid unnecessary target regeneration.

Make simplifies the installation of numerous libraries through a concise set of commands. A typical
sequence for installing an open-source library involves using the following commands:

make
make install

Typically, the make command builds the library, while make install copies the library's headers,
the libraries and the binaries to a user-specified folder, which defaults to the /usr or
/usr/local directory. This streamlined process facilitates the integration of the installed library

into your source code.

15 / 20

Summary (2/2)
In some circumstances, the build process can be optimized by employing the make -j<N>
command, where N represents the number of parallel jobs or commands executed concurrently.

Despite its advantages, Makefiles are platform-dependent, necessitating adaptation to different
operating systems. To address this issue, we will explore CMake as a potential solution,
providing a platform-independent alternative for managing and generating build systems.

Further readings
A simple makefile tutorial : Essential tutorial on make and Makefile.

Makefile tutorial : A GitHub repository with numerous makefile examples.

GNU make : Official documentation for make and Makefile.

16 / 20

https://cmake.org/
https://cs.colby.edu/maxwell/courses/tutorials/maketutor/
https://github.com/vampy/Makefile
https://www.gnu.org/software/make/manual/make.html

Exercise 1: building and using muParserX
Download and extract muParserX :

wget https://github.com/beltoforion/muparserx/archive/refs/tags/v4.0.12.tar.gz

The source files of muParserX are located inside the muparserx-4.0.12/parser/ folder.

In that folder, write a Makefile to compile muParserX into a shared library.

Write a Makefile that compiles and links the program in hints/ex1.cpp with muParserX .

17 / 20

https://beltoforion.de/en/muparserx/

Exercise 2: shared libraries
The hints/ex2/ directory contains a library that implements a gradient descent algorithm for
linear regression , accompanied by a source file ex2.cpp utilizing this library.

Unfortunately, the gradient descent code within the library contains a bug.

Your tasks are:

1. Compile the library and test file, using the provided Makefiles.

2. Inspect the code to locate the bug within the gradient descent algorithm.

3. Once the bug is identified, fix it within the code. Then, compile an updated version of the
library, incorporating the bug fix.

4. Execute the test case to verify that the bug fix successfully addresses the issue. Please note
that, since we are dealing with a shared library, this verification should be conducted without
the need for recompilation or relinking of the test file.

18 / 20

https://www.geeksforgeeks.org/gradient-descent-in-linear-regression/
https://www.geeksforgeeks.org/gradient-descent-in-linear-regression/

Exercise 3: order matters
The hints/ex3/ directory contains a source file ex3.cpp that uses a library graphics_lib ,
which depends on another library math_lib .

1. Generate a static library libmath.a .

2. Generate a static library libgraphics.a .

3. Compile ex3.cpp into an object file ex3.o .

4. Link main.o against libmath.a and libgraphics.a to produce the final executable.

What is the correct order for passing ex3.o , libmath.a , and libgraphics.a to the linker to
successfully resolve all the symbols?

Would the same considerations apply if dynamic linking (shared libraries) were used instead of
static linking?

19 / 20

(Advanced) Exercise 4: dynamic loading
This exercise showcases dynamic loading, the building block for implementing a plugin system.

The hints/ex4/ contains a module functions containing the definition of three mathematical
functions. The source file functions.cpp gets compiled into a shared library libfunctions.so ,
using C linkage to prevent name mangling .

Notably, when compiling the source file ex4.cpp into an executable, there is no need to link
against libfunctions.so .

1. Fill in the missing parts in ex4.cpp to dynamically load the library.

2. Prompt the user for the function name to evaluate at a given point, selecting from the ones
available in the library.

3. Perform the evaluation and print the result.

4. Release the library.

20 / 20

https://en.wikipedia.org/wiki/Name_mangling#C++

	Page 1
	Exercise session 07
	Introduction to GNU Make. Libraries: building and use.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	18 Nov 2024

	Page 2
	Introduction to GNU Make

	Page 3
	Introduction
	Prerequisites

	Page 4
	Getting started
	Manual compilation

	Page 5
	Definitions

	Page 6
	Creating a basic Makefile for C++

	Page 7
	Variables for clarity

	Page 8
	Automatic dependency generation

	Page 9
	Phony targets

	Page 10
	Variables for source files

	Page 11
	Building a library and linking against it

	Page 12
	Makefile to build a library (1/2)

	Page 13
	Makefile to build a library (2/2)

	Page 14
	Makefile to link against a library

	Page 15
	Summary (1/2)

	Page 16
	Summary (2/2)
	Further readings

	Page 17
	Exercise 1: building and using muParserX

	Page 18
	Exercise 2: shared libraries

	Page 19
	Exercise 3: order matters

	Page 20
	(⚠️ Advanced) Exercise 4: dynamic loading

