Exercise session 08

Introduction to CMake.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

19 Nov 2024

1/28

Introduction to CMake

2128

Build systems

Purposes
Build systems are a way to deploy software.
They are used to:

1. Provide others a way to configure your own project.

2. Configure and install third-party software on your system.
Configure means:

 Meet dependencies
 Build

e Test

3/28

Build systems available
-

o Pros: Easy to learn, great support for multiple IDES, cross-platform

o Cons: Does not perform automatic compilation test for met dependencies.

3 GNU Autotools

o Pros: Excellent support for legacy Unix platforms, large selection of existing modules.

o Cons: Slow, hard to use correctly, painful to debug, poor support for non-Unix platforms.

Package managers:

428

https://cmake.org/
https://www.gnu.org/software/automake/manual/html_node/index.html
https://mesonbuild.com/
https://bazel.build/
https://scons.org/
https://conan.io/
https://vcpkg.io/

Let's try

Install dependencies, then compile and install.

(CMake)

cd /path/to/doxygen/src/

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=/opt/doxygen ../
make -j<N>

(sudo) make install

GNU Scientific Library gEUite)(ele]ls))

cd /path/to/gsl/src/
./configure --prefix=/opt/gsl --enable-shared --disable-static

make -j<N>
(sudo) make install

5/28

https://github.com/doxygen/doxygen
https://www.gnu.org/software/gsl/

Why CMake?

 More packages use CMake than any other system
e Almost every IDE supports CMake (or vice-versa)
e Really cross-platform, no better choices for Windows

e Extensible, modular design
Who else is using CMake?

e Netflix

HDF Group, ITK, VTK, Paraview (visualization tools)
Armadillo, CGAL, LAPACK, Trilinos (linear algebra and algorithms)
deal.ll, Gmsh (FEM analysis)

KDE, Qt, ReactOS (user interfaces and operating systems)

6/28

CMake basics

The root of a project using CMake must contain a CMakeL.ists.txt file.

cmake_minimum_required(VERSION 3.12)

This 1s a comment.

project(MyProject VERSION 1.0
DESCRIPTION "A very nice project"
LANGUAGES CXX)

Please use a CMake version more recent than your compiler (at least = 3.0).

Command names are case insensitive.

7128

CMake 101

e Configure

cd /path/to/src/

mkdir build && cd build
cmake .. [options...]

Or.:

cmake -S /path/to/src/ -B /path/to/build/ [options...]
« Compile
cd /path/to/build/
make -Jj<N>
 List variable values

cd /path/to/build/
cmake /path/to/src/ -L

81728

Targets

CMake is all about targets and properties. An executable is a target, a library is a target. Your
application is built as a collection of targets depending on each other.

Header files are optional.
add_executable(my_exec my_main.cpp my_header.hpp)

Options are STATIC, SHARED (dynamic) or MODULE (plugins).
add_library(my_1lib STATIC my_class.cpp my_class.hpp)

9/28

Target properties

Targets can be associated with various [Jfoagles :

add_library(my_1lib STATIC my_class.cpp my_class.hpp)
target_include_directories(my_1lib PUBLIC include_dir)
"PUBLIC" propagates the property to

other targets depending on "my_1lib".
target_link_libraries(my_1lib PUBLIC another_1lib)

add_executable(my_exec my_main.cpp my_header.h)
target_link_libraries(my_exec my_1lib)
target_compile_features(my_exec cxx_std_20)

Last command is equivalent to:

set_target_properties(my_exec PROPERTIES CXX_STANDARD 20)

target_compile_options(my_exec PUBLIC -Wall -Wpedantic)

10/ 28

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html

Interacting with the outside world: local variables

set (LIB_NAME "my_1lib")

List items are space- or semicolon-separated.
set(SRCS "my_class.cpp;my_main.cpp")

set (INCLUDE_DIRS "include_one;include_two")

add_library(${LIB_NAME} STATIC ${SRCS} my_class.hpp)
target_include_directories(${LIB_NAME} PUBLIC ${INCLUDE_DIRS})

add_executable(my_exec my_main.cpp my_header.h)
target_link_libraries(my_exec ${LIB_NAME})

11/ 28

Interacting with the outside world: cache variables

Cache variables are used to interact with the command line:

"VALUE" 1s just the default value.
set (MY_CACHE_VARIABLE "VALUE" CACHE STRING "Description")

Boolean specialization.
option(MY_OPTION "This 1s settable from the command line" OFF)

Then:

cmake /path/to/src/ \
-DMY_CACHE_VARIABLE="SOME_CUSTOM_VALUE" \
-DMY_OPTION=0OFF

12 / 28

Interacting with the outside world: environment variables

Read.
message("PATH is set to: $ENV{PATH}")

Write.
set (ENV{variable_name} value)

(although it is generally a good idea to avoid them).

13 /28

Control flow

if("${variable}") # Or if('"condition").
#
else()

Undefined variables would be treated as empty strings, thus false.
endif ()

The following operators can be used.

Unary: NOT , TARGET , EXISTS (file), DEFINED , etc.
Binary. STREQUAL , AND , OR, MATCHES (regular expression), ...

Parentheses can be used to group.

14/ 28

Branch selection

Useful for switching among different implementations or versions of any third-party library.

#ifdef USE_ARRAY

std: :array<double, 100> my_array;
#else

std: :vector<double> my_array(100);
#endif

How to select the correct branch?

15/ 28

Pre-processor flags

target_compile_definitions(my_exec PRIVATE USE_ARRAY=1)

Or let the user set the desired flag:

option(WITH_ARRAY "Use std::array instead of std::vector" ON)
if (WITH_ARRAY)

target_compile_definitions(my_exec PRIVATE USE_ARRAY=1)
endif ()

16 / 28

Modify files depending on variables

print_version.hpp.1in:

void print_version() {
std::cout << "Version number: " << @MY_PROJECT_VERSION@
<< std::endl;

CMakelLists.txt:

set(MY_PROJECT_VERSION 1.2.0)

configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/print_version.hpp.in"
"${CMAKE_CURRENT_BINARY_DIR}/print_version.hpp")

See also: EREVCHE LG .

17 /28

https://cmake.org/cmake/help/latest/command/configure_file.html

Print messages and debug

Content of variables is printed with

message("MY_VAR is: ${MY_VAR}")

Error messages can be printed with

message(FATAL_ERROR "MY_VAR has the wrong value: ${MY_VAR}")

Commands being executed are printed with

cmake /path/to/src/ -B build --trace-source=CMakelLists.txt
make VERBOSE=1

18 /28

Useful variables

« CMAKE_SOURCE_DIR: top-level source directory
« CMAKE_BINARY_DIR: top-level build directory

If the project is organized in sub-folders:

« CMAKE_CURRENT_SOURCE_DIR: current source directory being processed
« CMAKE_CURRENT_BINARY_DIR: current build directory

Options are "Release", "Debug",
"RelwWithDebInfo", "MinSizeRel"
set (CMAKE_BUILD_TYPE Release)

set (CMAKE_CXX_COMPILER "/path/to/c++")

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -wall")
set (CMAKE_LIBRARY_OUTPUT_DIRECTORY lib)

19 /28

Looking for third-party libraries

CMake looks for module files FindPackage.cmake in the directories specified in
CMAKE_PREFIX_PATH .

set (CMAKE_PREFIX_PATH "${CMAKE_PREFIX_PATH} /path/to/modules/")

Specify "REQUIRED" if the library is mandatory.
find_package(Boost 1.50 COMPONENTS filesystem graph)

If the library is not located in a system folder, often a hint can be provided:

cmake /path/to/src/ -DBOOST_ROOT=/path/to/boost/installation/

20/ 28

Using third-party libraries

Once the library is found, proper variables are populated.

if(${Boost_FOUND})
target_include_directories(my_1lib PUBLIC
${Boost_INCLUDE_DIRS})

target_link_directories(my_1lib PUBLIC
${Boost_LIBRARY_DIRS})

0ld CMake versions:
link_directories(${Boost_LIBRARY_DIRS})

target_link_libraries(my_1lib ${Boost_LIBRARIES})
endif ()

21/ 28

Compilation test

CMake can try to compile a source and save the exit status in a local variable.

try_compile(
HAVE_ZIP
"${CMAKE_BINARY_DIR}/temp"

"${CMAKE_SOURCE_DIR}/tests/test_zip.cpp"
LINK_LIBRARIES ${ZIP_LIBRARY}
CMAKE_FLAGS

"-DINCLUDE_DIRECTORIES=${ZIP_INCLUDE_PATH}"
"-DLINK_DIRECTORIES=${ZIP_LIB_PATH}")

See also: .

22 | 28

https://cmake.org/cmake/help/latest/command/try_run.html

Execution test

CMake can run specific executables and check their exit status to determine (un)successful runs.

include(CTest)
enable_testing()
add_test(NAME MyTest COMMAND my_test_executable)

23 /28

Organize a large project

cmake_minimum_required(VERSION 3.12)
project (ExampleProject VERSION 1.0 LANGUAGES CXX)

find_package(...)
find_package(...)

add_subdirectory(src)

add_subdirectory(apps)
add_subdirectory(tests)

24 | 28

Tip: how to organize a large project

B project/
— B apps/
— = CMakelLists.txt
— = my_app.cpp
— P cmake/
L— 7 FindSomelLib.cmake
—— N doc/
L Doxyfile.in
P scripts/
L— =/ do_something.sh
— B src/
— & CMakeLists.txt
— = my_lib. {hpp, cpp}
— P tests/
— =/ CMakelLists.txt
— my_test.cpp
¢! .gitignore
~ CMakeLists.txt
B LICENSE.md
“) README.md

1T

25128

Further readings

3 Official documentation
Modern CMake
It's time to do CMake right

Effective modern CMake

More modern CMake

26 / 28

https://cmake.org/cmake/help/latest/
https://cliutils.gitlab.io/modern-cmake/
https://pabloariasal.github.io/2018/02/19/its-time-to-do-cmake-right/
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://www.youtube.com/watch?v=y7ndUhdQuU8&feature=youtu.be

Exercise 1

1. Following exercises/07/solutions/ex1 , configure and install muParserX on your system
using the builtin cMake configurator.

2. Write a CMake script to compile and link the test code ex1.cpp against it.

27128

Exercise 2

Re-do exercises/07/solutions/ex3 with the help of CMake.

28 128

	Page 1
	Exercise session 08
	Introduction to CMake.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	19 Nov 2024

	Page 2
	Introduction to CMake

	Page 3
	Build systems
	Purposes

	Page 4
	Build systems available
	Package managers:

	Page 5
	Let's try

	Page 6
	Why CMake?

	Page 7
	CMake basics

	Page 8
	CMake 101

	Page 9
	Targets

	Page 10
	Target properties

	Page 11
	Interacting with the outside world: local variables

	Page 12
	Interacting with the outside world: cache variables

	Page 13
	Interacting with the outside world: environment variables

	Page 14
	Control flow

	Page 15
	Branch selection

	Page 16
	Pre-processor flags

	Page 17
	Modify files depending on variables
	print_version.hpp.in:
	CMakeLists.txt:

	Page 18
	Print messages and debug

	Page 19
	Useful variables

	Page 20
	Looking for third-party libraries

	Page 21
	Using third-party libraries

	Page 22
	Compilation test

	Page 23
	Execution test

	Page 24
	Organize a large project

	Page 25
	Tip: how to organize a large project

	Page 26
	Further readings

	Page 27
	Exercise 1

	Page 28
	Exercise 2

