
Lecture 06

The Standard Template Library.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

04 Nov 2024

1 / 69

Outline
1. Containers

Sequence containers

Container adaptors

Associative containers

Special containers

2. Iterators

3. Algorithms

4. Evolution of the STL

2 / 69

An overview of the
Standard Template Library (STL) in C++

3 / 69

History
In November 1993, Alexander Stepanov introduced the Standard Template Library (STL) to the
ANSI/ISO committee for C++ standardization. This library was founded on the principles of generic
programming and featured generic containers, iterators, and a comprehensive set of algorithms
designed to operate on them.

The proposal was not only accepted but also paved the way for what is now known as the
Standard Library. The Standard Library has evolved into a vast collection of tools that play an
indispensable role in modern C++ development.

Notably, all functionalities provided by the Standard Library are encapsulated under the std::
namespace or, in some cases, within sub-namespaces also contained within std:: .

4 / 69

The Boost libraries
Many components added to the Standard Library over the years were originally proposed in the
Boost C++ libraries , a collection of libraries designed to complement the Standard Library and

cater to a wide range of applications.

Notably, one outstanding component within the Boost libraries is the Boost Graph Library , widely
used by professionals working with graphs and networks.

All Boost libraries are open-source and can be installed individually or as a whole on various Linux
platforms using package managers. For instance, on Ubuntu, you can use the command sudo
apt-get install libboost-all-dev . Alternatively, you can download the source code and
compile them manually.

5 / 69

https://www.boost.org/
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/index.html

An overview of the STL (1/2)
Porting of C libraries: Several C libraries have been adapted to the std namespace. As an
example, <math.h> becomes <cmath> , and they all begin with a 'c'.

Containers: Generic containers and iterators.

Utilities: Smart pointers, fixed-size collections of heterogeneous values like pair and
tuple , clocks and timers, function wrappers, and predefined functors. Also, the ratio class

for constant rationals.

Algorithms: These operate on ranges of values, usually stored in standard containers, to
perform specific actions like sorting, transformations, and copying. Some of them even
support parallel execution.

Strings and text processing: The string class and its derived classes, regular
expressions, and efficient string manipulation tools.

Support for I/O: I/O streams and related utilities.

Utilities for diagnostics: Standard exception classes and exception handlers. 6 / 69

An overview of the STL (2/2)
Numerics: complex<T> , numeric limits, random numbers and distributions, and basic
mathematical operators.

Support for generic programming: Type traits, declval , and as_const .

Support for reference and move semantics: Reference wrappers, move() , and
forward<T> .

Support for multithreading and concurrency: Threads, mutexes, locks, and parallel
algorithms.

Support for internationalization: locale and wide_char .

Filesystem: Tools for examining the file system.

Allocators: Utilities that allow you to change how objects are allocated within containers.

Utilities for hybrid data: optional , variant , and any .

7 / 69

A milestone: C++11
Standardization process: C++11 marked the successful completion of a rigorous
standardization process.

Modern features: C++11 introduced modern language features like lambda expressions and
range-based for loops.

Enhanced Standard Library: New containers, algorithms, and utility classes.

Improved memory management: Smart pointers were introduced in C++11.

Initializer lists: C++11 introduced initializer lists, simplifying data structure initialization.

Simpler and safer code: The addition of lambda expressions improved code readability and
maintainability.

Standardized threads: It brought a standardized threading library, enabling concurrent and
parallel programming.

Improved performance: Move semantics and rvalue references boosted resource
management and program performance. 8 / 69

Containers

9 / 69

Sequence containers
Containers can be categorized based on how data is stored and handled internally. The categories
include:

Sequence containers: std::vector<T> , std::array<T,N> , std::deque<T> ,
std::list<T> , std::forward_list<T> .

Ordered collections of elements with their position independent of the element value.

In std::vector and std::array , elements are guaranteed to be contiguous in
memory and can be accessed directly using the [] operator.

Adaptors: These are built on top of other containers and provide special operations:

std::stack<T> , std::queue<T> , and std::priority_queue<T> .

10 / 69

Example: std::vector

std::vector<int> v{2,4,5}; // 2, 4, 5.
v.push_back(6); // 2, 4, 5, 6.
v.pop_back(); // 2, 4, 5.
v[1] = 3; // 3, 4, 5.
std::cout << v[2]; // 5
for (int x : v)
 std::cout << x << ' '; // Prints: 2 3 5
std::cout << std::endl;

v.reserve(8);
v.resize(5, 0);
std::cout << v.capacity() << std::endl;
std::cout << v.size() << std::endl;

11 / 69

Example: std::array

std::array<int, 6> a{4,8,15,16,23,42};
std::cout << a.size() << std::endl; // 6
std::cout << a[0] << std::endl; // 4
std::cout << a[3] << std::endl; // 16
std::cout << a.front() << std::endl; // 4
std::cout << a.back() << std::endl; // 42

std::array<int, 3> b{7,8,9};
// a = b; // Compiler error: types don't match!

12 / 69

Source

13 / 69

https://hackingcpp.com/cpp/cheat_sheets.html

Which sequence container to choose?

14 / 69

Associative containers (1/3)
Associative containers: These collections have elements whose position depends on their
content. They are divided into:

Maps: Elements are key-value pairs.

Sets: Elements are just values (in sets, keys and values are considered the same).

Furthermore, they can be divided into ordered and unordered, depending on how the
elements are stored, imposing different requirements on element types.

 In a set, the terms "value" and "key" are used interchangeably since they are
equivalent.

15 / 69

Associative containers (2/3)

Ordered associative containers:

std::set<K> (no repetition) and std::multiset<K> (repetition allowed): They store
single values, and the value is the key.

std::map<K,V> (no repetition of keys) and std::multimap<K,V> (repetition of keys
allowed): They store pairs of (key, value) and act as dictionaries.

An ordering relation must be defined for the key K . It can be done using a specific callable
object, a specialization of the functor std::less<K> , or by defining operator<() .

Keys can be accessed read-only; modifications of keys require special operations.

16 / 69

Associative containers (3/3)

Unordered associative containers:

std::unordered_set<K> and std::unordered_multiset<K> .

std::unordered_map<K,V> and std::unordered_multimap<K,V> .

Their general behavior is similar to that of the ordered counterparts.

A hashing function, mapping keys to positive integers in a range [0, max), should be provided
along with a proper equivalence relation among keys.

For standard types, a default hash function is provided by the library, as well as relational
operators.

17 / 69

Source

18 / 69

https://hackingcpp.com/cpp/cheat_sheets.html

Example: std::map
std::map<std::string, int> age; // Creating a std::map with string keys (names) and integer values (ages).

// Inserting key-value pairs into the map. Elements are automatically sorted by key.
age["Alice"] = 25;
age["Charlie"] = 22;
age["Charlie"] = 23; // Overwrite the previous value.
age["Bob"] = 30;

// Accessing elements by key.
const std::string name = "Charlie";
if (age.find(name) != age.end()) {
 std::cout << name << " is " << age[name] << " years old." << std::endl;
} else {
 std::cout << "Information about " << name << " not found." << std::endl;
}

const int age_david = age.at("David"); // Throw an exception if "David" is not present.
const int age_david2 = age["David"]; // WARNING: this will allocate "David" if not present!

// Iterating through the map.
std::cout << "Name - Age map:" << std::endl;
for (const auto& entry : age) {
 std::cout << entry.first << " is " << entry.second << " years old." << std::endl;
}

19 / 69

Example: std::set
std::set<int> numbers; // Creating a std::set of integers.

// Inserting elements into the set. Elements are automatically sorted.
numbers.insert(10);
numbers.insert(30);
numbers.insert(20);
numbers.insert(10); // Duplicate, won't be added.
numbers.insert(20); // Duplicate, won't be added.

// Checking if an element is in the set.
const int search_value = 20;
if (numbers.find(search_value) != numbers.end()) { // Or, since C++20: if (numbers.contains(search_value))
 std::cout << search_value << " is in the set." << std::endl;
} else {
 std::cout << search_value << " is not in the set." << std::endl;
}

// Iterating through the set.
for (const int& num : numbers) {
 std::cout << num << " ";
}
std::cout << std::endl;

20 / 69

Special containers: std::byte
std::byte is a relatively low-level data type introduced in C++17, and its primary use is to

represent individual bytes in memory, often used for bitwise operations and when dealing with raw
memory. std::byte can be used for encoding and decoding data:

Example

std::byte flags = std::byte(0b11001010);
std::byte mask = std::byte(0b11110000);
std::byte result = flags & mask; // Bitwise AND operation.

21 / 69

Special containers: std::pair
std::pair represents a pair of values. It's commonly used to combine two values into a single

entity.

Example

std::pair<double, double> min_max(const std::vector<double> &vec) {
 // Compute min_val and max_val.
 return std::make_pair(min_val, max_val);
}

std::vector<double> data;
// ...
const std::pair<double, double> result = min_max(data);

std::cout << "Minimum value: " << result.first << std::endl;
std::cout << "Maximum value: " << result.second << std::endl;

22 / 69

Special containers: std::tuple
std::tuple is a generalization of std::pair representing a heterogeneous collection of values.

It can hold elements of different types.

Example

std::tuple<std::string, int, std::string> get_person_info() {
 return std::make_tuple("Alice", 28, "Engineer");
}

std::tuple<std::string, int, std::string> person = get_person_info();

// Access and display the individual elements of the tuple.
const std::string name = std::get<0>(person);
const int age = std::get<1>(person);
const std::string occupation = std::get<2>(person);

23 / 69

Special containers: std::variant
std::variant represents a type-safe union of types, allowing you to hold one value from a set of

specified types.

Example
std::variant<double, std::string> var;

var = "Hello"; // Hold a string.
var = 10.5; // Hold a double.

const double c = std::get<double>(var); // c is now 10.5.

std::string s = std::get<std::string>(var); // Runtime error: not currently holding a string!!

// But I can check.
if (var.holds_alternative<std::string>()) {
 // It's a string.
}

24 / 69

Special containers: std::optional
std::optional is a special wrapper introduced in C++17 for a type that behaves partially

similarly to a pointer but is convertible to bool , with false indicating that the value is missing or
unset. It also contains other methods to interrogate its content.

Example

// A vector of optionals storing a double.
std::vector<std::optional<double>> data(100); // All elements are unset.
data[10] = 45.27; // You set the optional just by assigning the value.
auto d = data[7]; // This is unset: you can interrogate it.

if (d.has_value()) // Or: if (d)
 std::cout << d.value() << std::endl;
else
 std::cout << "Value unset";

const double value_or_default = data[20].value_or(1.5);

25 / 69

Special containers: std::any
std::any is a class introduced in C++17 that provides a dynamic, type-safe container for holding

values of any type. It allows you to store and retrieve objects of different types in a type-safe
manner.

std::any data;

data = 42; // Store an integer.

if (data.type() == typeid(int)) {
 const int value = std::any_cast<int>(data);
}

data = std::string("Hello, world!"); // Store a string.

if (data.type() == typeid(std::string)) {
 const std::string value = std::any_cast<std::string>(data);
}

26 / 69

Source

27 / 69

https://hackingcpp.com/cpp/cheat_sheets.html

Iterators

28 / 69

Iterators
Iterators are a generalization of pointers that allow a C++ program to work with different data
structures (for example, containers and ranges (since C++20)) in a uniform manner. The iterator
library provides definitions for iterators, as well as iterator traits, adaptors, and utility functions.

Since iterators are an abstraction of pointers, their semantics are a generalization of most of the
semantics of pointers in C++. This ensures that every function template that takes iterators works
as well with regular pointers.

Basic functionality
An iterator is any object that allows iterating over a succession of elements, typically stored in a
standard container. It can be dereferenced with the * operator, returning an element of the
range, and incremented (moving to the next element) with the ++ operator.

29 / 69

Source

 C++20 has redefined the categories with ranges . Old ones are now referred to as
Legacy.

30 / 69

https://en.cppreference.com/w/cpp/iterator
https://en.cppreference.com/w/cpp/ranges

Source

31 / 69

https://cplusplus.com/reference/iterator/

Containers iterators
All main containers have iterators that belong to the Forward category. std::array and
std::vector have Random access iterators.

All containers have the methods begin() and end() iterator to the first and the (last + 1)-nth
element in the container (cbegin() and cend() return the const equivalents). You may also
use the corresponding free functions std::begin() and std::end() , which can be overloaded
for any type.

All containers define the types Container::iterator , Container::reverse_iterator , and the
corresponding const versions (Container::const_iterator , etc.).

 In a const iterator, it is the pointed element that is const , not the iterator itself!
More precisely, it is an iterator to const .

 auto simplifies the use of iterators!

32 / 69

Methods and types in containers (1/2)
Default, copy, and move constructors

Container c(beg, end) : Constructor from the range

size() : Number of stored elements

empty() : true if empty

max_size() : Max number of elements that can be stored

Comparison operators

c1 = c2 : Copy assignment, c1 may be a container of a different type from c2

c1.swap(c2) : Swaps data (c2 may be a container of different type)

std::swap(c1, c2) : As above (as a free function)

33 / 69

Methods and types in containers (2/2)
begin() : Iterator to the first element

end() : Iterator to the position after the last element

rbegin() : Reverse iterator for reverse iteration (initial position)

rend() : Reverse iterator (position after the last element)

cbegin(), cend(), crbegin(), crend() : Same as above, but iterating over const
elements

insert(pos, elem) : Inserts a copy of elem (return value may differ)

emplace(pos, args...) : Inserts an element by constructing it in place

erase(beg, end) : Removes all elements in the range

clear() : Removes all elements (makes the container empty)

34 / 69

Types defined by containers
C::value_type : The type of the object stored in a container. value_type must be

assignable and copy constructible, but need not be default constructible.

C::iterator : The type of the iterator used to iterate through a container's elements.

C::const_iterator : A type of iterator that may be used to examine but not modify a
container's elements.

C::reference : A type that behaves as a reference to the container's value type.

C::const_reference : A type that behaves as a const reference to the container's value type.

C::pointer : A type that behaves as a pointer to the container's value type.

C::difference_type : A signed integral type used to represent the distance between two of
the container's iterators.

C::size_type : An unsigned integral type that can represent any nonnegative value of the
container's distance type.

35 / 69

Why types in a container?
Having the type of the contained elements defined in the container may seem peculiar. After all,
the type of elements in a vector<T> is just T ! However, this technique is useful in generic
programming:

template <typename Container>
void my_fun(Container &c) {
 using ValueType = typename Container::value_type;
 // ...
 ValueType a;
}

The auto specifier and decltype() reduce this need. For instance, you could have written:

using ValueType = decltype(*(c.begin()));

But being explicit is often better! Having traits to specify type members gives a lot of flexibility (and
indeed the standard library uses traits...). 36 / 69

Distance between iterators
The distance between iterators is equal to the number of elements in the range defined by them.

{
 const std::set<int> my_set = {10, 20, 30, 40, 50};

 auto first = my_set.lower_bound(20); // Iterator to the first element >= 20.
 auto second = my_set.lower_bound(40); // Iterator to the first element >= 40.
 const int distance = std::distance(first, second); // Calculate the distance.
}
{
 const std::vector<int> my_vector = {1, 2, 3, 4, 5};

 auto first = my_vector.begin();
 auto second = std::find(my_vector.begin(), my_vector.end(), 4); // Return iterator to element 4.
 const int distance = std::distance(first, second); // Calculate the distance.
}

Distance may be negative if iterators are random access.

37 / 69

size_type and std::size_t
Container::size_type in a sequence container is the type used as an argument in
operator[] , defined for these containers.

It is guaranteed to be an unsigned integral type. Use it instead of int or unsigned int if you
anticipate problems with implicit conversions. size_type is implementation-dependent (it may
vary between 32-bit and 64-bit architectures).

By default, it is set equal to std::size_t , defined in <cstddef> , which is the type used to
address ordinary arrays.

If you want to be safe, use std::size_t or Container::size_type to address sequential
containers.

for (std::size_t i = 0; i < a.size(); ++i)
 a[i] = ...;

38 / 69

Algorithms

39 / 69

Ranges (sequences)
The term range (or sequence) refers to a pair of iterators that define an interval of elements that
are "logically adjacent" within a container.

We provide a working definition. Two iterators b and e define a valid range if the
instruction:

for (iterator p = b; p != e; ++p) {
 *p;
}

is valid, and *p returns the value of an element of the container.

The algorithms of the standard library typically operate on sequences.

40 / 69

Algorithms
The STL provides an extensive set of algorithms to operate on containers, or more precisely on
ranges.

For a full list, you may look here for generic algorithms and here for numeric algorithms.

 C++20 has revised the concept of range and provides a new set of algorithms in the
namespace std::ranges , with the same name as the old ones, but simpler to use
and sometimes more powerful.

41 / 69

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/numeric

Why using a standard algorithm?
Many standard algorithms can be implemented using a for loop. So what's the advantage? I start
by saying that there is nothing wrong with the for-loop version. If you are happy with it, use it. Yet
with standard algorithms:

You are more uniform with respect to different container types.

The algorithm of the standard library may do certain optimizations if the contained elements
have some characteristics.

You have a parallel version for free (see next slides).

42 / 69

Types of algorithms

Non-modifying algorithms
They Do not modify the value of the range. They work also on constant ranges.

Example

It std::find(ForwardIt first, ForwardIt last, const T & value)

Finds the first occurrence of value in the range [first, last) .

43 / 69

Types of algorithms

Modifying algorithms
They either modify the given range, like

void std::fill(ForwardIt first, ForwardIt last, const T& value);

assigns the given value to the elements in the range [first, last) .

Or, they copy the result of an operation into another (existing) range. For instance

OutIt std::copy(InIt first, InIt last, OutIt result);

copies [first, last) into the range that starts at result .

44 / 69

Inserters
Inserters are special iterators used to insert values into a container. Three main types:

std::back_inserter(Container& x) : Inserts at the back (only for sequential containers).

std::front_inserter(Container& x) : Inserts in the front (only for sequential containers).

std::inserter(Container& x, It position) : Inserts after the indicated position.

Example

std::copy(a.begin(), a.end(), std::front_inserter(c));

The computational cost depends on the type of container!

45 / 69

Example: std::inserter
Several algorithms require writing the output to a non-const range indicated by the iterator to its
beginning. Without inserters, it would be impossible to use them on a non-sequential container or
on a sequential container of insufficient size.

std::vector<double> a;
std::set<double> b;

std::copy(a.begin(), a.end(), b.begin()); // ERROR: b is not large enough.

You need an inserter:

std::copy(a.begin(), a.end(), std::inserter(b, b.begin())); // Ok.

For an associative container, the second argument of inserter is taken only as a suggestion.

46 / 69

Types of algorithms

Sorting

Particular modifying algorithms operating on a range to order it according to an ordering
relation (default: std::less<T>):

std::vector<double> a;

// Descending order: a[i+1] <= a[i].
std::sort(a.begin(), a.end(), std::greater<double>());

// Ascending order: a[i+1] >= a[i].
std::sort(a.begin(), a.end());

47 / 69

Operating on sorted ranges
Search algorithms:

bool std::binary_search(It first, It last, const T& value);

returns true if the value is present.

Set union, intersection, and difference (they do not need to be a std::set<T> , it is sufficient
that the range is ordered):

std::set<int> a;
std::set<int> b;
// ...
set<int> c;
std::set_union(a.begin(), a.end(), b.begin(), b.end(), std::inserter(c, c.begin()));

Now .

 Remember that a std::set is already ordered!

48 / 69

Types of algorithms

Min and Max
A series of algorithms to find the minimum and maximum element in a range:

template <class T>
const T& max(const T& a, const T& b);

template <class T>
const T& min(const T& a, const T& b);

template <class T, class Compare>
const T& max(const T& a, const T& b, Compare comp);

template <class T>
std::pair<const T&, const T&> minmax(const T& a, const T& b);

template <class InputIt1, class InputIt2>
bool lexicographical_compare(InputIt1 first1, InputIt1 last1,
 InputIt2 first2, InputIt2 last2);

49 / 69

Types of algorithms

Numeric operations

Numeric operations are available in <numeric> .

Examples:

std::vector<double> v;
std::vector<double> w;

// Sum of a range.
auto sum = std::accumulate(v.begin(), v.end(), 0);

// Product of a range.
auto product = std::accumulate(v.begin(), v.end(), 1, std::multiplies<double>());

// The same with lambdas.
auto product = std::accumulate(v.begin(), v.end(), 1, [](double a, double b) { return a * b; });

auto r1 = std::inner_product(v.begin(), v.end(), w.begin(), 0);

50 / 69

std::transform
Another very flexible algorithm is std::transform , present in two forms:

OutIt transform(InIt first1, InIt last1, OutIt result, UnaryOperator op);
OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2, OutIt result, BinaryOperator binary_op);

You can apply unary or binary functions to elements in a range.

The length of the ranges must be consistent (no check is made).

Example

std::set<double> a;
std::list<double> l;
// ...

std::vector<double> b(a.size());
std::transform(a.begin(), a.end(), l.begin(), b.begin(), std::plus<double>());

 now contains . 51 / 69

A list of other interesting algorithms (1/2)
std::for_each : Apply a function to a range.

std::find_if : Find the first element satisfying a predicate.

std::count : Count appearances of a value in a range.

std::count_if : Return the number of elements in a range satisfying a predicate.

std::replace : Replace a value.

std::replace_if : Replace values in a range satisfying a predicate.

std::replace_copy : Copy a range while replacing values.

std::replace_copy_if : Copy a range, replacing values satisfying a predicate.

std::fill : Fill a range with a value.

std::fill_n : Fill n elements with a value.

std::generate : Generate values according to a given unary function.

52 / 69

A list of other interesting algorithms (2/2)
std::remove_if : Remove elements satisfying a predicate.

std::remove_copy : Remove values and copy them to another range.

std::remove_copy_if : Remove elements satisfying a predicate and copy.

std::unique : Remove consecutive duplicates.

std::random_shuffle : Rearrange elements in a range randomly.

std::partition : Partition a range into two.

Operations on sorted ranges, such as union, intersection, etc.

Full list here and here for numerical functions and algorithms.

53 / 69

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/numeric

Parallel algorithms
Since C++17, most STL algorithms now support parallel execution via multi-threading.

Execution policies:
std::execution::seq : Sequential execution (no parallelization).

std::execution::par : Parallel sequenced execution.

std::execution::par_unseq : Parallel unsequenced execution (vectorization).

The last execution policy is activated only if the hardware supports it.

Be careful with data races; ensure your procedure is parallelizable.

C++ provides tools to control parallel execution finely (mutexes, etc.), but their use is complex
and beyond the scope of this course.

54 / 69

Example: parallel algorithms
std::vector<int> v;

// Find element using parallel execution policy.
auto result1 = std::find(std::execution::par, std::begin(v), std::end(v), 2);

// Sort elements using sequential execution policy.
auto result2 = std::sort(std::execution::seq, std::begin(v), std::end(v));

55 / 69

Evolution of the STL

56 / 69

Evolution of the STL
The C++ Standard Template Library (STL) has seen several enhancements and improvements in
each major C++ standard release, including C++11, C++14, C++17, C++20, and C++23. Here's a
summary of the main introductions to the STL in each of these versions.

References and further reading
C++ reference

Modern C++ for Absolute Beginners : A Friendly Introduction to the C++ Programming
Language and C++11 to C++23 Standards, Slobodan Dmitrović, Apress, March 2023.

Evolution since C++11

Learn modern C++

57 / 69

https://en.cppreference.com/w/cpp
https://link.springer.com/book/10.1007/978-1-4842-9274-7
https://github.com/AnthonyCalandra/modern-cpp-features
https://github.com/kybuivan/learn-programming-languages/tree/main/cpp

C++11
1. Move semantics

2. Variadic templates

3. Rvalue references

4. Lambda expressions

5. auto

6. nullptr

7. Range-based for loops

8. Smart pointers

9. Type traits

10. ...

58 / 69

https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#move-semantics
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#variadic-templates
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#rvalue-references
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#lambda-expressions
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#auto
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#nullptr
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#range-based-for-loops
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#smart-pointers
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP11.md#type-traits

C++14
1. Binary literals

2. Generic lambdas

3. Return type deduction

4. decltype(auto)

5. Variable templates

6. User-defined literals for standard library types

7. ...

59 / 69

https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#binary-literals
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#generic-lambda-expressions
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#return-type-deduction
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#decltypeauto
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#variable-templates
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#user-defined-literals-for-standard-library-types

C++17
1. Template argument deduction for class templates

2. Fold expressions

3. Lambda capture this by value

4. Structured bindings

5. constexpr if

6. UTF-8 character literals

7. New library features like std::variant, std::optional, and std::any

8. ...

60 / 69

https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#template-argument-deduction-for-class-templates
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#folding-expressions
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#lambda-capture-this-by-value
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#lambda-capture-this-by-value
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#constexpr-if
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#utf-8-character-literals
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP17.md#c17-library-features

C++20
1. Coroutines

2. Concepts

3. Ranges

4. Modules

5. Designated initializers

6. Template syntax for lambdas

7. constexpr virtual functions

8. New library features, including std::span and math constants

9. ...

61 / 69

https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP20.md#coroutines
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP20.md#concepts
https://en.cppreference.com/w/cpp/ranges
https://en.cppreference.com/w/cpp/language/modules
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP20.md#designated-initializers
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP20.md#template-syntax-for-lambdas
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP20.md#constexpr-virtual-functions
https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP20.md#c20-library-features

C++23 (still subject to variation)
1. Concepts in STL: Further adoption of concepts in STL algorithms and containers.

2. Improved parallelism: Expanding parallel algorithms and enhancing support for parallel
execution.

3. Reflection: Potential support for reflection, making it easier to inspect and manipulate types
at runtime.

4. Networking library: The Networking library might become part of the standard, adding
networking capabilities.

5. Enhanced ranges: Expanding and refining the ranges library with new utilities.

6. ...

Source

62 / 69

https://en.cppreference.com/w/cpp/23

Example: the evolution of for loops (1/5)

1. Traditional for loop (pre-C++11)

std::vector<int> vec = {1, 2, 3, 4, 5};
for (size_t i = 0; i < vec.size(); ++i) {
 std::cout << vec[i] << " ";
}

Usage: Commonly used before C++11.

Explanation: This form uses an integer index to access elements. It works with any indexable
container (like std::vector or std::array).

Pros: Allows direct access to both the index and the element, which is useful when you need
the position of elements.

Cons: Can be error-prone with boundary conditions, and may be inefficient if the container
recalculates size() each time.

63 / 69

Example: the evolution of for loops (2/5)

2. for loop with iterators (pre-C++11)

std::vector<int> vec = {1, 2, 3, 4, 5};
for (std::vector<int>::iterator it = vec.begin(); it != vec.end(); ++it) {
 std::cout << *it << " ";
}

Usage: A step toward more generic and flexible loops.

Explanation: Uses iterators instead of an index, making it adaptable to all STL containers,
including those without random-access iterators (like std::list).

Pros: Supports non-indexable containers and is more generic.

Cons: Verbose syntax and the need for dereferencing (*it) can make code harder to read.

64 / 69

Example: the evolution of for loops (3/5)

3. Range-based for loop (C++11)

std::vector<int> vec = {1, 2, 3, 4, 5};
for (int value : vec) { // Or: for (const auto value : vec)
 std::cout << value << " ";
}

Usage: Introduced in C++11, this syntax is much more concise and readable.

Explanation: Automatically loops over elements in the container without the need for iterators
or indices.

Pros: Simple, concise, and avoids off-by-one errors. Great for most use cases where you just
need the element value.

Cons: Limited flexibility - doesn't provide access to the index, and modifying elements
requires using a reference (for (int &value : vec)).

65 / 69

Example: the evolution of for loops (4/5)

4. Structured bindings (C++17)

std::tuple<int, std::string, double> my_tuple{1, "a string", 2.5};
const auto [i, s, d] = my_tuple; // Unpack tuple.

std::map<int, std::string> my_map = {{1, "one"}, {2, "two"}};
for (const auto& [key, value] : my_map) {
 std::cout << key << ": " << value << "\n";
}

Usage: Simplifies code when looping over key-value pairs in associative containers.

Explanation: Introduced in C++17, structured bindings allow unpacking of key-value pairs
directly within the loop.

Pros: Very readable and works well with std::map and std::unordered_map .

Cons: Limited to associative containers; doesn’t add much benefit when used with containers
like std::vector . 66 / 69

Example: the evolution of for loops (5/5)

5. Range-Based for with std::ranges (C++20)

#include <ranges>

for (int value : vec | std::views::reverse) {
 std::cout << value << " ";
}

Usage: Introduced with the ranges library in C++20.

Explanation: Adds flexibility by allowing modifications (like reverse , filter , transform)
directly in the loop using range adaptors.

Pros: Makes the loop more expressive and reduces the need for external functions to modify
sequences.

Cons: Requires understanding of range adaptors and may not be necessary for simpler
loops. 67 / 69

Conclusion
The STL is a fundamental part of the C++ standard library, offering a rich set of data structures,
algorithms, and utilities that make C++ a powerful and expressive language. To fully harness the
power of the STL:

1. Algorithm usage: Algorithms are the backbone of the STL. Utilize them to simplify and
optimize common operations, enhancing code readability and maintainability.

2. Container selection: Choose the appropriate container type (e.g., std::vector , std::map ,
std::queue) based on your specific needs. This decision greatly impacts your code's

efficiency.

3. Smart pointers: Smart pointers like std::shared_ptr and std::unique_ptr are crucial for
effective memory management, preventing memory leaks and resource leaks.

4. Newer features: Stay up-to-date with the latest C++ standards (e.g., C++20, C++23) and
incorporate new features like ranges, concepts, and structured bindings to write cleaner and
more efficient code. 68 / 69

 Smart pointers, move semantics, utilities from
the STL.

69 / 69

	Page 1
	Lecture 06
	The Standard Template Library.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	04 Nov 2024

	Page 2
	Outline

	Page 3
	An overview of the Standard Template Library (STL) in C++

	Page 4
	History

	Page 5
	The Boost libraries

	Page 6
	An overview of the STL (1/2)

	Page 7
	An overview of the STL (2/2)

	Page 8
	A milestone: C++11

	Page 9
	Containers

	Page 10
	Sequence containers

	Page 11
	Example: std::vector

	Page 12
	Example: std::array

	Page 13
	Page 14
	Which sequence container to choose?

	Page 15
	Associative containers (1/3)
	⚠️ In a set, the terms "value" and "key" are used interchangeably since they are equivalent.

	Page 16
	Associative containers (2/3)

	Page 17
	Associative containers (3/3)

	Page 18
	Page 19
	Example: std::map

	Page 20
	Example: std::set

	Page 21
	Special containers: std::byte
	Example

	Page 22
	Special containers: std::pair
	Example

	Page 23
	Special containers: std::tuple
	Example

	Page 24
	Special containers: std::variant
	Example

	Page 25
	Special containers: std::optional
	Example

	Page 26
	Special containers: std::any

	Page 27
	Page 28
	Iterators

	Page 29
	Iterators
	Basic functionality

	Page 30
	⚠️ C++20 has redefined the categories with ranges. Old ones are now referred to as Legacy.

	Page 31
	Page 32
	Containers iterators
	⚠️ In a const iterator, it is the pointed element that is const, not the iterator itself! More precisely, it is an iterator to const.
	⚠️ auto simplifies the use of iterators!

	Page 33
	Methods and types in containers (1/2)

	Page 34
	Methods and types in containers (2/2)

	Page 35
	Types defined by containers

	Page 36
	Why types in a container?

	Page 37
	Distance between iterators

	Page 38
	size_type and std::size_t

	Page 39
	Algorithms

	Page 40
	Ranges (sequences)

	Page 41
	Algorithms
	⚠️ C++20 has revised the concept of range and provides a new set of algorithms in the namespace std::ranges, with the same name as the old ones, but simpler to use and sometimes more powerful.

	Page 42
	Why using a standard algorithm?

	Page 43
	Types of algorithms
	Non-modifying algorithms
	Example

	Page 44
	Types of algorithms
	Modifying algorithms

	Page 45
	Inserters
	Example

	Page 46
	Example: std::inserter

	Page 47
	Types of algorithms
	Sorting

	Page 48
	Operating on sorted ranges
	⚠️ Remember that a std::set is already ordered!

	Page 49
	Types of algorithms
	Min and Max

	Page 50
	Types of algorithms
	Numeric operations

	Page 51
	std::transform
	Example

	Page 52
	A list of other interesting algorithms (1/2)

	Page 53
	A list of other interesting algorithms (2/2)

	Page 54
	Parallel algorithms

	Page 55
	Example: parallel algorithms

	Page 56
	Evolution of the STL

	Page 57
	Evolution of the STL
	References and further reading

	Page 58
	C++11

	Page 59
	C++14

	Page 60
	C++17

	Page 61
	C++20

	Page 62
	C++23 (still subject to variation)
	Source

	Page 63
	Example: the evolution of for loops (1/5)
	1. Traditional for loop (pre-C++11)

	Page 64
	Example: the evolution of for loops (2/5)
	2. for loop with iterators (pre-C++11)

	Page 65
	Example: the evolution of for loops (3/5)
	3. Range-based for loop (C++11)

	Page 66
	Example: the evolution of for loops (4/5)
	4. Structured bindings (C++17)

	Page 67
	Example: the evolution of for loops (5/5)
	5. Range-Based for with std::ranges (C++20)

	Page 68
	Conclusion

	Page 69
	➡️ Smart pointers, move semantics, utilities from the STL.

