
Lecture 07

Smart pointers, move semantics, STL utilities.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

05 Nov 2024

1 / 87

Outline
1. Smart pointers

2. Move semantics

3. Exceptions

4. STL utilities
I/O streams

Random numbers

Time measuring

Filesystem

2 / 87

Smart pointers

3 / 87

RAII: Resource Acquisition Is Initialization
RAII, short for Resource Acquisition Is Initialization, plays a significant role in C++. It essentially
means that an object should be responsible for both the creation and destruction of the resources
it owns.

Not RAII compliant:

double *p = new double[10];

Who is responsible for destroying the resources pointed to by p ?

RAII compliant:

std::array<double, 10> p;

The variable p takes care of creating 10 doubles and destroying them.

In C++, smart pointers are important tools to implement RAII. 4 / 87

Pointers in modern C++
In modern C++, we use different types of pointers:

Standard pointers: Use them only to watch (and operate on) an object (resource) whose
lifespan is independent of that of the pointer (but not shorter).

Owning pointers (Smart pointers): They control the lifespan of the resource they point to.
There are three kinds:

std::unique_ptr : With unique ownership of the resource. The owned resource is
destroyed when the pointer goes out of scope.

std::shared_ptr : With shared ownership of a resource. The resource is destroyed
when the last pointer owning it is destroyed.

std::weak_ptr<T> : A non-owning pointer to a shared resource, reserved for special use
cases.

Smart pointers implement the RAII concept. For simply addressing a resource, possibly
polymorphically, use ordinary pointers. 5 / 87

Example: the need for std::unique_ptr (1/4)

class MyClass {
public:
 void set_polygon(Polygon *p) {
 polygon = p;
 }
private:
 Polygon *polygon; // Polymorphic object.
}

Polygon *create_polygon(std::string t) {
 switch (t) {
 case "Triangle":
 return new Triangle{...};
 case "Square":
 return new Square{...};
 default:
 return nullptr;
 }
}

6 / 87

Example: the need for std::unique_ptr (2/4)

MyClass a;
a.set_polygon(create_polygon("Triangle"));

 This design is error-prone, requiring careful handling of resources, leading to
potential memory leaks and dangling pointers.

7 / 87

Example: the need for std::unique_ptr (3/4)
class MyClass {
public:
 set_polygon(std::unique_ptr<Polygon> p) {
 polygon = std::move(p);
 }
private:
 std::unique_ptr<Polygon> polygon;
}

std::unique_ptr<Polygon> create_polygon(std::string t) {
 switch (t) {
 case "Triangle":
 return std::make_unique<Triangle>(...); // 'make_unique' available since C++14.
 case "Square":
 return std::make_unique<Square>(...);
 default:
 return nullptr;
 }
}

8 / 87

Example: the need for std::unique_ptr (4/4)

MyClass a;
a.set_polygon(create_polygon("Triangle"));

 This version with std::unique_ptr is RAII-compliant, improving resource
management.

9 / 87

How a std::unique_ptr works
A std::unique_ptr<T> serves as a unique owner of the object of type T it refers to. The object
is destroyed automatically when the std::unique_ptr gets destroyed.

It implements the * and -> dereferencing operators, so it can be used as a normal pointer.
However, it can be initialized to a pointer only through the constructor.

The default constructor produces an empty (null) unique pointer, and you can check if a
std::unique_ptr is empty by testing if (ptr) or using it in a boolean context.

10 / 87

Main methods and utilities of std::unique_ptr
std::swap(ptr1, ptr2) : Swaps ownership.

ptr1 = std::move(ptr2) : By definition, unique pointers cannot be copied, but their
ownership can be transferred using the std::move utility. Moves resources from ptr2 to
ptr1 . The previous resource of ptr1 is deleted, and ptr2 remains empty.

ptr.reset() : Deletes the resource, making ptr empty.

ptr1.reset(ptr2) : Equivalent to ptr1 = std::move(ptr2) .

ptr.get() : Returns a standard pointer to the handled resource.

ptr.release() : Returns a standard pointer, releasing the resource without deleting it. ptr
becomes empty.

std::unique_ptr instances can be stored in standard containers, such as vectors.

11 / 87

Shared pointers
For instance you have several objects that refer to a resource (e.g., a matrix, a shape, ...) that is
build dynamically (and maybe is a polymorphic object). You want to keep track of all the
references in such a way that when (and only when) the last one gets destroyed the resource is
also destroyed.

To this purpose you need a std::shared_ptr<T> . It implements the semantic of clean it up when
the resource is no longer used.

While std::unique_ptr do not cause any computational overhead (they are just a light wrapper
around an ordinary pointer), shared pointers do, so use them only if it is really necessary.

12 / 87

Example: the need for std::shared_ptr (1/2)

class Data { ... };

class Preprocessor {
public:
 Preprocessor(const std::shared_ptr<Data> &data, ...) : data(data) {}
private:
 std::shared_ptr<Data> data;
};

class NumericalSolver {
public:
 NumericalSolver(const std::shared_ptr<Data> &data, ...) : data(data) {}
private:
 std::shared_ptr<Data> data;
};

13 / 87

Example: the need for std::shared_ptr (2/2)
std::shared_ptr<Data> shared_data = std::make_shared<Data>(...);

Preprocessor preprocessor(shared_data, ...);
preprocessor.preprocess();

// shared_data will still be used by other resources, hence it cannot be destroyed here.

NumericalSolver solver(shared_data, ...);
solver.solve();

14 / 87

How a std::shared_ptr works
std::shared_ptr allows shared ownership of dynamically allocated objects. It keeps track of the

number of shared references to an object through reference counting. When the reference count
reaches zero, the object is automatically deallocated, preventing memory leaks.
std::shared_ptr is thread-safe, making it suitable for concurrent access. It can also be used for

managing resources beyond memory and can be equipped with custom deleters.

It implements the * and -> dereferencing operators as well, so it can be used as a normal
pointer. Moreover, it provides copy constructors and assignment operators.

The default constructor produces an empty (null) unique pointer, and you can check if a
std::shared_ptr is empty by testing if (ptr) or using it in a boolean context.

We can swap, move, get, and release a std::shared_ptr just as we do with std::unique_ptr .

15 / 87

Example: shared pointers
// Create a shared_ptr to a dynamically allocated object.
std::shared_ptr<MyClass> shared_ptr = std::make_shared<MyClass>(42);

// Access the object through the shared_ptr.
shared_ptr->print();

// Create another shared_ptr that shares ownership
std::shared_ptr<MyClass> another_shared_ptr = shared_ptr;

// Check the use count (number of shared_ptrs owning the object).
std::cout << "Use count: " << shared_ptr.use_count() << std::endl;

// Create a new shared_ptr.
std::shared_ptr<MyClass> new_shared_ptr = std::make_shared<MyClass>(55);

// The old one goes out of scope, but is still referenced by 'another_shared_ptr'.
shared_ptr = new_shared_ptr;

// Check the use count again.
std::cout << "Use count: " << shared_ptr.use_count() << std::endl;

16 / 87

std::weak_ptr
The std::weak_ptr is a smart pointer that holds a non-owning (weak) reference to an object
managed by a std::shared_ptr . It must be converted to std::shared_ptr to access the
referenced object.

std::shared_ptr<int> ptr = std::make_shared(10);
std::weak_ptr<int> weak1 = ptr; // Get pointer to data without taking ownership.

ptr = std::make_shared(5); // Delete managed object, acquires new pointer. weak1 expires.
std::weak_ptr<int> weak2 = ptr; // Get pointer to new data without taking ownership.

auto tmp1 = weak1.lock() // tmp1 is nullptr, as weak1 is expired!
auto tmp2 = weak2.lock()) // tmp2 is a shared_ptr to new data (5).
std::cout << "weak2 value is " << *tmp2 << std::endl;

17 / 87

Reference wrappers
References create aliases to existing objects and must be initialized. It's crucial to be cautious with
references to temporary objects. A const reference prolongs the life of a temporary object.

Standard containers can hold only "first-class" objects, but not references. However, you can use
std::reference_wrapper from the <functional> header to store objects with reference-like

semantics in a container.

int a = 10, b = 20, c = 30;

std::vector<std::reference_wrapper<int>> ref_vector = {a, b, c};

// Modify the original values through the reference wrappers.
for (std::reference_wrapper<int> ref : ref_vector) {
 ref.get() += 5;
}

18 / 87

Move semantics

19 / 87

The problem: swap may be costly
Let's consider this function that swaps the arguments:

void swap(Matrix& a, Matrix& b) {
 Matrix tmp{a}; // Make a copy of a.
 a = b; // Copy assign b to a.
 b = tmp; // Copy assign tmp to b.
}

If a and b are of big size, this function is very inefficient.

Memory inefficient: we have to store tmp .

Computationally inefficient: copy operations imply copying all matrix elements.

In this code, an unintended copy of the matrix occurs during the swap operation.
We need to find a way to prevent these unnecessary copies.

20 / 87

A better swap (before C++11)
Let's assume that Matrix stores dynamic data for its elements as a double* data (maybe it is
better to use a standard vector, but it is not relevant here). Before the introduction of move
semantics, I could have solved the problem by writing a special method or a friend function. For
instance:

void swap_with_move(Matrix& a, Matrix& b) {
 // Swap number of rows and columns.

 double* tmp = a.data; // Save the pointer.
 a.data = b.data; // Copy the pointer.
 b.data = tmp; // Copy the saved pointer.
}

This way I just swap the pointers, saving memory and operations, but only for this specific
situation. It is not generalizable: I cannot write a function template swap_with_move<T> because
I need to know how data is stored in T , for each case.

21 / 87

Questions to be addressed
To implement move semantics, three questions have to be addressed:

1. How can we identify objects that can be safely moved instead of copied, so that the compiler
may perform the move automatically, whenever possible?

2. How can I actually implement the move in a uniform and general way?

3. How can I specify that I want to move, instead of copying?

Let's give the answer one question at a time. For the first one, we need to introduce value
categories.

22 / 87

Categories of values
In C++, a value is characterized by its type and its category, which expresses how the value can
be used.

In C++, we have 4 categories for values: glvalue, prvalue, xvalue, and lvalue. Moreover, they can
be const or non-const.

To simplify matters (without losing important information), we will only use 2 categories: lvalue
(which also includes glvalue) and rvalue (which includes prvalue and xvalue).

23 / 87

lvalues and rvalues in C
The original definition of lvalues and rvalues from the earliest days of C is as follows:

An lvalue is an expression that may appear on the left and on the right-hand side of an
assignment.

An rvalue is an expression that can only appear on the right hand side of an assignment.

Example

double fun(); // A function returning a double.

3.14 = a; // Wrong: a literal expression is an rvalue!
fun() = 5; // Wrong: returning an object generates an rvalue!

24 / 87

lvalues and rvalues in C++
User-defined types, const , and operator overloading make the definition of rvalues/lvalues rather
complicated in C++. We avoid the formal definition contained in the standard (very technical). We
give a simple definition, correct in most cases:

An lvalue is an expression that refers to a memory location and allows us to take its address
via the & operator.

An rvalue is an expression that is not an lvalue.

For this reason, lvalue is nowadays interpreted as locator-value and no more left-value. It is still
true that a (non-const) rvalue can only be at the right-hand side of an assignment.

25 / 87

Examples of lvalues
The value held in a variable (i.e., a value with a name) is always an lvalue. Even if it is const or a
constexpr , since we can take its address.

double a;
int const b = 10;
double* pa = &a; // Address of a.
int const* pb = &b; // Address of b.

If a function returns an lvalue reference (&), the returned value is an lvalue.

double& f(double & x) { x *= 3; return x; }

double y = 8.0;
f(y) = 3.0;
double* px = &(f(y)); // Address of y.

26 / 87

Examples of rvalues
The value returned by a function is an rvalue.

double fun(double x) { ... }

Here, &fun is a pointer to the function, not to the returned value. I cannot take the address of the
returned value; it's a temporary object.

Non-string literals are rvalues.

double* ptr = &(10.5); // Error (taking the address of a temporary doesn't make sense).

Compilers are free not to store them in memory, so no address may be taken (and it does not
make sense to take it).

Strings, however, are lvalues.

27 / 87

How can we identify objects that can be safely moved
instead of copied?
Non-const rvalues are eligible for "automatic moving". Indeed, if we cannot take the address, it
means that they exist only to be stored somewhere.

So we have the answer to the first question: rvalues are movable. In particular, values returned by
a function are movable.

28 / 87

How can I actually implement the move in a uniform and
general way?
To answer the second question, let's look at how references bind according to the category of the
bound values.

We consider ordinary references first, from now on called lvalue references. A non-const lvalue
reference cannot bind to rvalues, while both lvalues and rvalues can be bound to const lvalue
references.

29 / 87

Reference binding
double & pi = 3.14; // Wrong: A literal expression is an rvalue.
double const & another_pi = 3.14; // Ok!

int foo(); // Return an rvalue.
int & foo(int & a); // Return a reference, thus an lvalue.
int goo(const int & a); // Returns an rvalue.

auto p = foo(); // Ok: p is an int.
int & c = foo(p); // Ok: the function returns an lvalue here!
int & d = foo(3); // NO! 3 is an rvalue and cannot be bound to an (lvalue) reference.
auto & x = goo(foo()); // NO! as above.
const int & a = goo(foo()); // Ok, an rvalue binds to a const lvalue reference.

30 / 87

Reference binding in overloaded functions
The interplay between reference types and binding is clear (and important) when looking at
function overloading.

void foo(int & a);
void foo(const int & a);
void goo(const int & a);
void zoo(int & a);

int g;
const int b = 10;

foo(5); // Calls foo(const int &)
foo(g); // Calls foo(int &)
goo(g); // Calls goo(const int &);
foo(b); // Calls foo(const int &)
goo(b); // Calls goo(const int &);
zoo(b); // Error: a const lvalue can bind only to a const lvalue reference.

31 / 87

Conclusion on lvalue reference binding
A non-const lvalue reference can bind only, and preferably, to non-const lvalues.

A const lvalue reference binds both to lvalues and rvalues, const and non-const alike.

Here, "preferably" means that it will be chosen in case there is a choice.

This is before C++11. In fact, it is still true if we just use lvalue references.

The consequence is that with just lvalue references, we cannot distinguish lvalues from rvalues.

32 / 87

Relation with moving
Let's examine the following code

Matrix foo(); // A function returning a large object.

Matrix a;
a = foo();

The return value of foo could be moved into a safely! (Indeed, the Return Value Optimization
already does that for constructors).

It would be beneficial to have an "adornment" that acts like a reference, while ensuring that it
binds exclusively to rvalues and preferably to rvalues. This way, we can overload the
assignment operator as follows:

Matrix & operator=(const Matrix & a); // Ordinary copy.
Matrix & operator=(Matrix "new adorn" a); // Move!

33 / 87

rvalue reference
Indeed, C++11 has introduced a new kind of adornment, called rvalue reference, indicated by
&& .

It exclusively and preferably binds to rvalues. Preferably means that, if given the choice, an
rvalue binds to an rvalue reference.

An important thing to remember is that rvalue references bind rvalues and only rvalues.

34 / 87

Categories of values
We resume some rules:

If a function returns a value, that value is considered an rvalue.

If a function returns an lvalue reference (const or non-const), that value is considered an
lvalue.

If a function returns an rvalue reference, that value is an rvalue.

A (named) variable is always an lvalue.

This is fundamental for move semantics.

35 / 87

How is move semantics implemented?
We are now able to answer the second question. The key is the move constructor and the
move assignment operators.

This is the standard signature of move operations for a class named Matrix :

Matrix(Matrix&&); // Move constructor.
Matrix & operator=(Matrix&&); // Move assignment operator.

Remember that unless you have defined some other constructors or the copy assignment, the
compiler provides a synthetic move constructor and move assignment operator automatically,
which apply the corresponding moving operation on the non-static data members of the class.

36 / 87

Move semantics for Matrix (1/2)
Let's go back to Matrix . Assume that Matrix stores the data as a pointer to double . A
possible copy-constructor and copy-assignment take the form:

Matrix(const Matrix & rhs) : nr(rhs.nr), nc(rhs.nc), data(new double[nr * nc]) {
 // Make a deep copy.
 for (i = 0; i < rhs.nr * rhs.nc; ++i)
 data[i] = rhs.data[i];
}

Matrix & operator=(const Matrix & rhs) {
 // Release current resource.
 delete[] this->data;
 // Get a new data buffer.
 data = new double[rhs.nr * rhs.nc];
 // Make a deep copy.
 for the i = 0; i < rhs.nr * rhs.nc; ++i)
 data[i] = rhs.data[i];
}

37 / 87

Move semantics for Matrix (2/2)
The corresponding move operator could be:

Matrix(Matrix&& rhs) : nr(rhs.nr), nc(rhs.nc), data(rhs.data) {
 // Fix rhs so it is a valid empty matrix.
 rhs.data = nullptr;
 rhs.nr = rhs.nc = 0;
}

Matrix & operator=(Matrix&& rhs) {
 delete[] this->data; // Release the resource.
 data = rhs.data; // Shallow copy.
 // Fix rhs so it is a valid empty matrix.
 rhs.data = nullptr;
 rhs.nr = rhs.nc = 0;
}

I just grab the resource and leave an empty matrix! It is important to ensure that the moved
object can be deleted correctly!

38 / 87

The consequence
Matrix foo();
// ...
Matrix a;
a = foo(); // A move assignment is called.

We can say that a class implements move semantics when the move operators are defined, even
if they are automatically by the compiler.

39 / 87

Move semantics and perfect forwarding
Now, let's address the third question: How can I explicitly instruct the compiler to perform a
move instead of a copy operation when move semantics are implemented (possibly with
the synthesized move operators)? This question can be divided into two parts:

Move: How to explicitly tell the compiler to replace a copying operation with a move if move
semantics are implemented (perhaps with the synthesized move operators).

Perfect forwarding: How to write function templates that accept arbitrary arguments and forward
them to other functions in a way that the target functions receive the values with the same
category they were passed to the forwarding function. This topic will not be covered in this course
but you can find a good explanation here .

40 / 87

https://levelup.gitconnected.com/perfect-forwarding-647e1caaf879

Forcing a move: std::move
Well, first of all, std::move doesn't move anything. They have chosen a wrong name; they should
have called it std::movable instead. But we have to live with it.

std::move(expr) unconditionally casts expr to an rvalue. So it makes it available to be moved.

You use it to indicate to the compiler that you want something to be moved, even if it is an lvalue.
It is actually moved if move semantics has been implemented for that type. If not, it will be copied.

41 / 87

A new (generic) version of swap
Now we are able to write our swap , and in a generic way!

template<class T>
void swap(T& a, T& b) {
 T tmp{std::move(a)}; // Move constructor.
 a = std::move(b); // Move assignment operator.
 b = std::move(tmp); // Move assignment operator.
}
// Or, even simpler:
std::swap(a, b);

 If your class stores its dynamic and potentially large data in standard containers, you just need
the synthetic move operators (which means that you have move semantics for free!). Another
good reason to use standard containers.

 If type T implements move semantic, the swap is made using the move operators, and, if
implemented correctly, with less memory requirement. If not, we have the usual copy.

42 / 87

Once more: variables are always lvalues
Named variables are always lvalues! Even if they are declared as rvalue references. In fact, you
can take their address!

In particular, function parameters (of any function, including constructors) are lvalues, even
if their type is an rvalue reference.

Inside the scope of this function:

void f(Matrix&& m) {
 // ...
}

m is an lvalue.

43 / 87

The solution
You have to force the move:

class Foo {
public:
 Foo(Matrix&& m) : my_m{std::move(m)} {}
 // ...
private:
 Matrix my_m;
}

Now, my_m{std::move(m)} calls the move constructor, and m is moved into my_m .

44 / 87

What does move semantics have to do with the STL?
All standard containers support move semantic, and all standard algorithms are written so
that if the contained type implements move semantics, the creation of unnecessary temporaries
can be avoided. All containers also have a swap() method that performs swaps intelligently.

Smart pointers supports move (but std::unique_ptr disallows copy).

For instance, std::sort() (which does a lot of swaps) is much more efficient on dynamically
sized objects if move semantics are implemented.

Move semantics also make a few (but not all) template metaprogramming techniques now used in
some libraries, like Eigen , to avoid unnecessary large size temporaries.

45 / 87

https://eigen.tuxfamily.org/

Exceptions

46 / 87

Preconditions, postconditions, and invariants
In software development, a function (or method) can be seen as a mapping from input data to
output data. The software developer specifies the conditions under which the input data is
considered valid; this specification is called a precondition. The developer also guarantees that
the expected output, called a postcondition, is provided when the input adheres to the
precondition. Failure to meet these conditions is considered a fault or bug in the code.

An invariant of a class is a condition that must be satisfied by the state of an object at any point in
time, except for transient situations like the object's construction process. An object is considered
to be in an inconsistent state if the invariants are not met.

The verification of preconditions, postconditions, and invariants is an integral part of code
verification during the development phase.

47 / 87

An example
Consider a function in C++:

Matrix cholesky(const Matrix& m);

This function has a precondition that requires the input matrix m to be symmetric positive
definite.

The postcondition is that the output matrix is a lower triangular matrix representing the
Cholesky factorization of m .

An invariant of a symmetric matrix m is that m(i,j) = m(j,i) for all matrix elements.

48 / 87

Run-time assertions

Example

double calculate(double operand1, double operand2) {
 assert(operand2 != 0 && "Operand2 cannot be zero.");

 const double result = // ...

 assert(result >= 0 && "Negative result!");

 return result;
}

For improved efficiency, all assertions can be disabled (i.e. the argument to assert() will be
ignored) by defining the NDEBUG preprocessor macro, for instance:

g++ -DNDEBUG main.cpp -o main

49 / 87

Compile-time assertions

Example
template <typename T, int N>
class MyClass {
public:
 MyClass() {
 // Here goes a condition that can be evaluated at compile-time, such as constexpr.
 static_assert(std::is_arithmetic_v<T> && N > 0, "Invalid template arguments.");
 // ...
 }
};

If the condition is met, the error message is printed to the standard error and compilation will fail.

50 / 87

Exceptions
An exception is an anomalous condition that disrupts the normal flow of a program's execution
when left unhandled. It is not the result of incorrect coding but rather arises from challenging or
unpredictable circumstances.

Examples of exceptions include running out of memory after a new operation, failing to open a file
due to insufficient privileges, or encountering an invalid floating-point operation (floating-point
exception or FPE) that cannot be easily predicted.

It's essential to note that an incorrect behavior (e.g., failure to meet a postcondition for correct
input data) stemming from incorrect coding is not an exception; it is a bug that should be
debugged.

51 / 87

Why handling exceptions
Historically, in scientific computing, exceptions were often not handled at all or led to program
termination with an error message. However, the rise of graphical interfaces and more complex
software systems has made exception handling more critical. An algorithm's failure should not lead
to the termination of the entire program.

There is a growing need to perform recovery operations when exceptions occur.

52 / 87

Exception handling in C++
C++ provides an effective mechanism to handle exceptions. The basic structure consists of:

Using the throw command to indicate that an exception has occurred. You can throw an
object containing information about the exception.

Employing the try-catch blocks to catch and handle exceptions. If an exception is not
caught, it will propagate up the call stack and might lead to program termination.

The try block contains the code that might throw an exception, while the catch block handles
the exception.

53 / 87

Example
int divide(int dividend, int divisor) {
 if (divisor == 0) {
 throw std::runtime_error("Division by zero is not allowed.");
 }
 return dividend / divisor;
}

try {
 const int result = divide(10, 0); // Attempt to divide by zero.
 std::cout << "Result: " << result << std::endl;
} catch (const std::exception& e) {
 std::cerr << "Exception caught: " << e.what() << std::endl;
}

54 / 87

Standard exceptions
The Standard Library in C++ provides predefined exception classes for common exceptions.
They are accessible through the <exception> header. These classes derive from
std::exception , which defines a method what() to return an exception message.

virtual char const * what() const noexcept;

These standard exceptions are designed to be used or derived from when creating your own
exceptions. This promotes consistency and helps others understand your error handling approach.

55 / 87

An overview of standard exceptions
std::exception: The base class for all standard exceptions. It provides a what() method to
retrieve an error message.

std::runtime_error: Represents runtime errors.

std::logic_error: Represents logical errors in the program. It includes exceptions like
std::invalid_argument and std::domain_error .

std::overflow_error: Indicates arithmetic overflow errors.

std::underflow_error: Indicates arithmetic underflow errors.

std::range_error: Indicates errors related to out-of-range values.

std::bad_alloc: Used to indicate memory allocation errors.

std::bad_cast: Indicates casting errors during runtime type identification (RTTI).

std::bad_typeid: Used for errors related to the type identification of objects.

std::bad_exception: A placeholder for all unhandled exceptions.
56 / 87

Example: custom exception handling in C++ (1/3)
class InsufficientFundsException : public std::exception {
public:
 InsufficientFundsException(double balance, double withdrawal_amount)
 : balance(balance), withdrawal_amount(withdrawal_amount) {}

 const char * what() const noexcept override {
 return "Insufficient Funds: Cannot complete the withdrawal.";
 }
};

 double get_balance() const { return balance; }

 double get_withdrawal_amount() const { return withdrawal_amount; }

private:
 double balance;
 double withdrawal_amount;
};

57 / 87

Example: custom exception handling in C++ (2/3)
class BankAccount {
public:
 BankAccount(double initial_balance) : balance(initial_balance) {}

 void withdraw(double amount) {
 if (amount <= 0) {
 throw std::range_error("The requested amount is negative.");
 }

 if (amount > balance) {
 throw InsufficientFundsException(balance, amount);
 }
 balance -= amount;
 }

 double get_balance() const {
 return balance;
 }

private:
 double balance;
};

58 / 87

Example: custom exception handling in C++ (3/3)
Bank_account account(1000.0);

try {
 account.withdraw(1500.0);
 // Or: account.withdraw(-500.0);
} catch (const InsufficientFundsException& e) {
 std::cerr << "Exception caught: " << e.what() << std::endl;
 std::cerr << "Balance: " << e.get_balance()
 << ", Withdrawal amount: " << e.get_withdrawal_amount() << std::endl;
} catch (const std::range_error& e) {
 std::cerr << "Exception caught: " << e.what() << std::endl;
} catch (...) {
 std::cerr << "Unknown exception caught." << std::endl;
}

59 / 87

Old-style error control
In situations where an algorithm's failure is one of its expected outcomes (e.g., the failure of
convergence in an iterative method), returning a status rather than throwing an exception may be
more suitable. Instead of terminating the program, a status variable is used to indicate the
outcome, which can be checked by the caller. See also std::terminate , std::abort , and,
std::exit .

Exception handling is increasingly important in code that must be integrated into a broader
workflow or graphical interface. However, it's worth noting that the try-catch mechanism
introduces some inefficiencies since it checks for exceptions every time a function is called. High-
performance code often minimizes the use of exception handling.

In practical contexts where exception handling is necessary, the noexcept declaration can help
optimize efficiency by indicating functions and methods that do not throw exceptions.

60 / 87

https://en.cppreference.com/w/cpp/error/terminate
https://en.cppreference.com/w/cpp/utility/program/abort
https://en.cppreference.com/w/cpp/utility/program/exit

Floating point exceptions
It's important to note that floating point exceptions (FPE) are a special type of exception. In
IEEE-compliant architectures, invalid arithmetic operations on floating-point numbers do not result
in program failure. Instead, they produce special numerical values like inf (infinity) or nan (not-
a-number), and the operations continue.

This unique behavior distinguishes floating point exceptions from traditional exceptions.

There are ways, not covered in this course, to properly handle FPEs.

61 / 87

STL utilities

62 / 87

STL utilities: I/O streams

63 / 87

I/O streams
Input/Output (I/O) streams in C++ provide a convenient way to perform input and output
operations, allowing you to work with various data sources and destinations, such as files,
standard input/output, strings, and more. C++ I/O streams are part of the Standard Library (STL)
and are based on the concept of streams. The key components of C++ I/O streams are
iostream , ifstream , ofstream , and stringstream .

iostream : The base class for input and output streams. It is derived from istream (for
input) and ostream (for output). It is used for interacting with the standard input and output
streams.

int number;
std::cout << "Enter a number: ";
std::cin >> number;
std::cout << "You entered: " << number << std::endl;

64 / 87

File streams: open modes
The std::ios_base namespace defines the following options to deal with files.

Option Description

in File open for reading: the internal stream buffer supports input operations.

out File open for writing: the internal stream buffer supports output operations.

binary Operations are performed in binary mode rather than text.

ate The output position starts at the end of the file.

app
All output operations happen at the end of the file, app ending to its existing
contents.

trunc Any contents that existed in the file before it is open are truncated/discarded.

65 / 87

std::ifstream
std::ifstream : This class is used for reading data from files. You can open a file for input and

read data from it.

std::ifstream file("example.txt", open_mode);

if (file.is_open()) {
 std::string line;
 while (std::getline(file, line)) {
 std::cout << line << std::endl;
 }
 file.close();
} else {
 std::cerr << "Failed to open the file." << std::endl;
}

66 / 87

std::ofstream
std::ofstream : This class is used for writing data to files. You can open a file for output and

write data to it.

std::ofstream file("output.txt", open_mode);

if (file.is_open()) {
 file << "Hello, World!" << std::endl;
 file.close();
} else {
 std::cerr << "Failed to open the file." << std::endl;
}

67 / 87

std::stringstream
std::stringstream : This class allows you to work with strings as if they were input and output

streams. You can use stringstream for parsing and formatting strings.

// Using std::stringstream to format data into a string.
std::stringstream ss;
const int num = 42;
const double pi = 3.14159265359;

ss << "The answer is: " << num << ", and Pi is approximately " << pi;

std::cout << ss.str() << std::endl;

// Parsing data from a string using std::stringstream.
std::string input = "123 45.67";
int parsed_int;
double parsed_double;

std::stringstream(input) >> parsed_int >> parsed_double;

68 / 87

I/O formatting
Formatting: I/O streams provide various formatting options to control the appearance of output.
For instance, std::setw , std::setprecision , std::setfill , etc., from the <iomanip>
header, allow setting field width, precision, and fill characters in the output.

const double pi = 3.14159265359;
std::cout << "Default: " << pi << std::endl;
std::cout << "Fixed with 2 decimal places: " << std::fixed << std::setprecision(2) << pi << std::endl;
std::cout << "Scientific notation: " << std::scientific << pi << std::endl;
std::cout.setprecision(6);
std::cout << "Width 10 with left alignment: " << std::left << std::setw(10) << pi << ";" << std::endl;
std::cout << "Width 10 with right alignment: " << std::right << std::setw(10) << std::setfill('*') << pi << std::endl;

Output:

Default: 3.14159
Fixed with 2 decimal places: 3.14
Scientific notation: 3.141593e+00
Width 10 with left alignment: 3.14e+00 ;
Width 10 with right alignment: **3.14e+00

69 / 87

STL utilities: random numbers

70 / 87

Random numbers
The capability of generating random numbers is essential not only for statistical purposes but also
for internet communications. But an algorithm is deterministic. However, several techniques have
been developed to generate pseudo-random numbers. They are not really random, but they show
a low level of auto-correlation.

71 / 87

C++ support for statistical distributions
C++ provides extensive support for (pseudo) random number generators and univariate statistical
distributions. You need the header <random> . The chosen design is based on two types of
objects:

1. Engines: They serve as a stateful source of randomness, providing random unsigned integer
values uniformly distributed in a range. They are normally used with distributions.

2. Distributions: They specify how values generated by the engine have to be transformed to
generate a sequence with prescribed statistical properties. The design separates the (pseudo)
random number generators from their use to generate a specific distribution.

72 / 87

Engines
Random number engines generate pseudo-random numbers using seed data as an entropy
source. Several different classes of pseudo-random number generation algorithms are
implemented as templates that can be customized. Some basic engines include:

linear_congruential_engine : Linear congruential algorithm

mersenne_twister_engine : Mersenne twister algorithm

subtract_with_carry_engine : Subtract-with-carry algorithm (a lagged Fibonacci)

Many more available in the <random> header

For simplicity, the library provides predefined engines, such as std::default_random_engine ,
which balances efficiency and quality. There are also non-deterministic engines, like
std::random_device , which generate non-deterministic random numbers based on hardware

data.

73 / 87

https://en.cppreference.com/w/cpp/numeric/random

Engines
You can generate an object of the chosen class either with the default constructor or by providing
a seed (an unsigned integer). If you use the same seed, the sequence of pseudo-random
numbers will be the same every time you execute the program.

std::default_random_engine rd1; // With a default-provided seed.
std::default_random_engine rd2{1566770}; // With a user-provided seed.

How to use the random_device
The random_device provides non-deterministic random numbers based on hardware data.
However, it is slower than other engines and is often used to generate the seed for another
random engine. Here's how to use it:

std::random_device rd;
std::default_random_engine rd3{rd()}; // With a random generated seed.

74 / 87

Default distributions in the STL
std::uniform_int_distribution , std::uniform_real_distribution

std::normal_distribution , std::lognormal_distribution ,
std::exponential_distribution

std::binomial_distribution , std::poisson_distribution ,

std::geometric_distribution , std::bernoulli_distribution

std::discrete_distribution

std::piecewise_constant_distribution , std::piecewise_linear_distribution

You can create custom distributions by subclassing the std::random_distribution class
and providing your own probability distribution function.

75 / 87

Distributions
Distributions are template classes that implement a call operator () to transform a random
sequence into a specific distribution. You need to pass a random engine to the distribution to
generate numbers according to the desired distribution. For example:

std::random_device rd;
std::default_random_engine gen{rd()};
std::uniform_int_distribution<> dice{1, 6};

for (unsigned int n = 0; n < 10; ++n)
 std::cout << dice(gen) << ' ';

std::cout << std::endl;

Here, uniform_int_distribution provides an integer uniform distribution in the range (1, 6).

76 / 87

seed_seq
The utility std::seed_seq consumes a sequence of integer-valued data and produces a
requested number of unsigned integer values. It provides a way to seed multiple random engines
or generators that require a lot of entropy.

For example, the internal state of the mt19937 generator is represented by 624 integers, hence
the best way to seed it is to fill it with 624 numbers based on a high-entropy source (e.g., the
random_device provided by the operating system):

std::random_device rd{};
std::array<std::uint32_t, 624> seed_data;
std::generate(seed_data.begin(), seed_data.end(), std::ref(rd));
std::seed_seq seq(seed_data.begin(), seed_data.end());

std::mt19937 gen{seq};

You can use the generated seeds to feed different random engines.

77 / 87

Shuffling
In C++, you can shuffle a range of elements using the std::shuffle utility from the
<algorithm> header. It shuffles the elements randomly so that each possible permutation has

the same probability of appearance. Here's an example:

std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
std::random_device rd;
std::default_random_engine g{rd()};
std::shuffle(v.begin(), v.end(), g);

Every time you run this code, the vector v will be shuffled differently.

78 / 87

Sampling
Another useful utility in <algorithm> is std::sample , which extracts n elements from a range
without repetition and inserts them into another range. Here's an example:

int n = 10;
std::vector<double> p;
// Fill p with more than n values to sample.
std::vector<double> res;
auto seed = std::random_device{}();
std::sample(p.begin(), p.end(), std::back_inserter(res), n, std::mt19937{seed});

This code generates a different realization of the sample every time you run it.

79 / 87

STL utilities: Time measuring

80 / 87

Time measuring
C++ provides three common clocks:

std::chrono::system_clock : Represents the system-wide real-time clock. It's suitable for
measuring absolute time (can change if the user changes the time on the host machine).

std::chrono::steady_clock : Represents a steady clock that never goes backward. It's
suitable for measuring time intervals and performance measurements.

std::chrono::high_resolution_clock : Represents a high-resolution clock with the
smallest possible tick duration. It's often used for precise timing.

81 / 87

Example: time measuring
void my_function() {
 // Code to measure.
}

auto start = std::chrono::high_resolution_clock::now();
my_function();
auto end = std::chrono::high_resolution_clock::now();

auto duration =
 std::chrono::duration_cast<std::chrono::microseconds>(end - start);

std::cout << "Time taken by function: "
 << duration.count() << " microseconds" << std::endl;

82 / 87

Example: benchmarking
void my_function() {
 // Code to measure.
}

const int num_iterations = 1000;

auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < num_iterations; ++i) {
 my_function();
}
auto end = std::chrono::high_resolution_clock::now();

auto duration =
 std::chrono::duration_cast<std::chrono::microseconds>(end - start);

std::cout << "Average time taken by function: "
 << duration.count() / num_iterations << " microseconds" << std::endl;

83 / 87

STL utilities: Filesystem

84 / 87

Filesystem
Since C++17, a full set of utilities to manipulate files, directories, etc. in a filesystem is available.

const auto big_file_path{"big/file/to/copy"};

if (std::filesystem::exists(big_file_path)) {
 const auto big_file_size{std::filesystem::file_size(big_file_path)};

 std::filesystem::path tmp_path{"/tmp"};

 if (std::filesystem::space(tmp_path).available > big_file_size) {
 std::filesystem::create_directory(tmp_path.append("example"));
 std::filesystem::copy_file(big_file_path, tmp_path.append("new_file"));
 }
}

85 / 87

A final recommendation
C++ is continuously evolving, and to maintain backward compatibility, new features are added
while very few, if any, are eliminated. However, if you adopt a specific programming style, you'll
find yourself using only a subset of what C++ has to offer.

The more outdated and cumbersome features that make programming more complex and less
elegant will gradually be used less and less.

It's advisable to start incorporating the new features that genuinely assist you in writing cleaner,
simpler code. Most of the features illustrated here move in that direction.

But always remember: the most important aspect of your code is whether it accomplishes the right
task. An elegant code that yields incorrect results is of no use.

86 / 87

 Static and shared libraries.

87 / 87

	Page 1
	Lecture 07
	Smart pointers, move semantics, STL utilities.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	05 Nov 2024

	Page 2
	Outline

	Page 3
	Smart pointers

	Page 4
	RAII: Resource Acquisition Is Initialization
	Not RAII compliant:
	RAII compliant:
	In C++, smart pointers are important tools to implement RAII.

	Page 5
	Pointers in modern C++

	Page 6
	Example: the need for std::unique_ptr (1/4)

	Page 7
	Example: the need for std::unique_ptr (2/4)
	⚠️ This design is error-prone, requiring careful handling of resources, leading to potential memory leaks and dangling pointers.

	Page 8
	Example: the need for std::unique_ptr (3/4)

	Page 9
	Example: the need for std::unique_ptr (4/4)
	⚠️ This version with std::unique_ptr is RAII-compliant, improving resource management.

	Page 10
	How a std::unique_ptr works

	Page 11
	Main methods and utilities of std::unique_ptr

	Page 12
	Shared pointers

	Page 13
	Example: the need for std::shared_ptr (1/2)

	Page 14
	Example: the need for std::shared_ptr (2/2)

	Page 15
	How a std::shared_ptr works

	Page 16
	Example: shared pointers

	Page 17
	std::weak_ptr

	Page 18
	Reference wrappers

	Page 19
	Move semantics

	Page 20
	The problem: swap may be costly

	Page 21
	A better swap (before C++11)

	Page 22
	Questions to be addressed

	Page 23
	Categories of values

	Page 24
	lvalues and rvalues in C
	Example

	Page 25
	lvalues and rvalues in C++

	Page 26
	Examples of lvalues

	Page 27
	Examples of rvalues

	Page 28
	How can we identify objects that can be safely moved instead of copied?

	Page 29
	How can I actually implement the move in a uniform and general way?

	Page 30
	Reference binding

	Page 31
	Reference binding in overloaded functions

	Page 32
	Conclusion on lvalue reference binding

	Page 33
	Relation with moving

	Page 34
	rvalue reference

	Page 35
	Categories of values

	Page 36
	How is move semantics implemented?

	Page 37
	Move semantics for Matrix (1/2)

	Page 38
	Move semantics for Matrix (2/2)

	Page 39
	The consequence

	Page 40
	Move semantics and perfect forwarding

	Page 41
	Forcing a move: std::move

	Page 42
	A new (generic) version of swap

	Page 43
	Once more: variables are always lvalues

	Page 44
	The solution

	Page 45
	What does move semantics have to do with the STL?

	Page 46
	Exceptions

	Page 47
	Preconditions, postconditions, and invariants

	Page 48
	An example

	Page 49
	Run-time assertions
	Example

	Page 50
	Compile-time assertions
	Example

	Page 51
	Exceptions

	Page 52
	Why handling exceptions

	Page 53
	Exception handling in C++

	Page 54
	Example

	Page 55
	Standard exceptions

	Page 56
	An overview of standard exceptions

	Page 57
	Example: custom exception handling in C++ (1/3)

	Page 58
	Example: custom exception handling in C++ (2/3)

	Page 59
	Example: custom exception handling in C++ (3/3)

	Page 60
	Old-style error control

	Page 61
	Floating point exceptions

	Page 62
	STL utilities

	Page 63
	STL utilities: I/O streams

	Page 64
	I/O streams

	Page 65
	File streams: open modes

	Page 66
	std::ifstream

	Page 67
	std::ofstream

	Page 68
	std::stringstream

	Page 69
	I/O formatting

	Page 70
	STL utilities: random numbers

	Page 71
	Random numbers

	Page 72
	C++ support for statistical distributions

	Page 73
	Engines

	Page 74
	Engines
	How to use the random_device

	Page 75
	Default distributions in the STL

	Page 76
	Distributions

	Page 77
	seed_seq

	Page 78
	Shuffling

	Page 79
	Sampling

	Page 80
	STL utilities: Time measuring

	Page 81
	Time measuring

	Page 82
	Example: time measuring

	Page 83
	Example: benchmarking

	Page 84
	STL utilities: Filesystem

	Page 85
	Filesystem

	Page 86
	A final recommendation

	Page 87
	➡️ Static and shared libraries.

