
Lecture 08

Libraries: principles, building and use.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

12 Nov 2024

1 / 47

Outline
1. What is a library?

2. Types of library
Header-only

Static

Shared (dynamic)

How to link against libraries

3. Static libraries
How to build

4. Shared libraries
The linking phase

The loading phase

How to build

Dynamic loading

5. How to compile (and use) third-party
libraries?

2 / 47

What is a library?

3 / 47

What is a library?
A library is a collection of pre-written code or routines that can be reused by computer programs.
These libraries typically contain functions, variables, classes, and procedures that perform
common tasks, allowing developers to save time and effort by leveraging existing code rather than
writing everything from scratch.

Libraries can be specific to a programming language or more general-purpose, applicable across
different languages. Examples include the Standard Template Library (STL) in C++, the Java
Class Library, and the Python Standard Library. Additionally, there are third-party libraries created
by developers and organizations to extend the capabilities of programming languages or
frameworks.

4 / 47

Why libraries are useful?
Code reusability: Libraries provide a set of functionalities that can be used across multiple
projects, reducing the need to write the same code over and over again.

Modularity: Libraries promote modular programming by encapsulating specific functionalities
into separate modules or components.

Abstraction: Libraries abstract the underlying implementation details, allowing developers to
use high-level interfaces without needing to understand the inner workings of the functions
provided by the library.

Collaboration: Communities of developers can share and collaborate on libraries,
accelerating the development process. Many programming languages have centralized
repositories or package managers to facilitate the distribution and installation of libraries.

Efficiency: Libraries are often optimized and well-tested, providing efficient and reliable
solutions for common programming tasks.

5 / 47

Components of a C++ library (1/2)
A library provides utilities that may be used to produce executable code. In C or C++, it is usually
formed by:

A set of header files that provide the public interface of the library, necessary for those who
develop software using the library.

One or more library files that contain, in the form of machine code, the implementation of the
library. They may be static and shared (also called dynamic).

As an exception, there are libraries whose implementation is only contained in header files (thanks
to inline functions and templates).

These are called header-only libraries, and are the easiest to use.

An example of such is Eigen , a powerful library for linear algebra.

6 / 47

https://eigen.tuxfamily.org/index.php?title=Main_Page

Components of a C++ library (2/2)
Header files are only used in the development phase. In production, only library files are
needed.

Precompiled executables that just use shared libraries do not need header files to work. This is
why certain software packages are divided into standard and development versions; only the latter
contains the full set of header files.

For example:

sudo apt install python3

will install the python3 executable and the shared libraries it requires to be run, whereas

sudo apt install libpython3-dev

will download header files, libraries and tools required for building applications based on the
source code of Python3 (called CPython , written in C). 7 / 47

https://github.com/python/cpython

Curated lists of awesome C++ and Python frameworks,
libraries, resources, and shiny things.

Popular GitHub repositories using C++ !
awesome-cpp
awesome-python
awesome-scientific-python
awesome-scientific-computing

8 / 47

https://github.com/search?q=stars%3A%3E500+language%3AC%2B%2B+&type=repositories
https://github.com/fffaraz/awesome-cpp
https://github.com/vinta/awesome-python
https://github.com/rossant/awesome-scientific-python
https://github.com/nschloe/awesome-scientific-computing

Types of library

9 / 47

The build process

10 / 47

Header-only libraries
A library formed only by class templates and function templates contains only header files. One
example is Eigen , but many others are available.

Using a header-only library is very simple: you have to store the header files in a directory later
searched by the preprocessor.

So either you store them in a system include directory, like /usr/include or
/usr/local/include (you must have administrator privileges),

or in a directory of your choice that you will then indicate using the -I option of the compiler
(actually, of the preprocessor).

g++ -I/path/to/library/include/ ...

11 / 47

https://eigen.tuxfamily.org/index.php?title=Main_Page

Header-only libraries: example
Download Eigen 3.4.0.
wget https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.gz

Extract the archive to your Desktop.
tar xzvf eigen-3.4.0.tar.gz -C ${HOME}/Desktop

Compile and run 'example/eigen.cpp'.
g++ -I${HOME}/Desktop/eigen-3.4.0 eigen.cpp -o main_eigen && ./main_eigen

As simple as that.

From now on, however, we will deal with libraries that contain machine code, not header-only
libraries.

12 / 47

Static vs. shared libraries

Static library: A static library, often denoted by a .lib (on Windows) or .a (on Unix-like
systems) file extension, contains compiled code that is linked directly into an executable at
compile time. When you build a program using a static library, a copy of the library's code is
included in the final executable. This means that the resulting executable is independent of
the original library file; it contains all the necessary code to run without relying on external
library files.

Shared library (Dynamic Link Library .dll on Windows, Shared Object .so on Unix-like
systems, Dynamic Library .dylib on macOS): A shared library contains code that is loaded
at run-time when the program starts or during execution. Instead of being included in the
executable, the program references the shared library, and the operating system loads the
library into memory when needed. Multiple programs can use the same shared library, which
can result in more efficient use of system resources.

13 / 47

A guided example

main.cpp (developed by me)

#include "mylib.hpp"
...
myfun();
...

mylib (developed by somebody else)

// mylib.hpp
void myfun();

// mylib.cpp
#include "mylib.hpp"

void myfun() {}

14 / 47

The build process: preprocessing + compilation
The preprocessing and compilation steps

g++ -Imylib/ -c main.cpp

produce the object file main.o . What does it contain?

$ nm -C main.o
0000000000000000 T main
 U myfun()

The T in the second column indicates that the function main() is actually defined (resolved) by
the library. While myfun() is referenced but undefined. So, to produce a working executable, you
have to specify to the linker another library or object file where it is defined.

15 / 47

Indeed, the linking phase fails...
$ g++ main.o -o main
/usr/bin/ld: main.o: in function `main':
main.cpp:(.text+0x9): undefined reference to `myfun()'
collect2: error: ld returned 1 exit status

16 / 47

Case 1: I have access to the implementation of myfun()

Step 1: compile the object file implementing myfun()

g++ -c mylib.cpp

Step 2: link my application against that object file

g++ main.o mylib/mylib.o -o main

Now both main and myfun are resolved:

$ nm -C main
00000000000011a9 T main
00000000000011bd T myfun()
...

17 / 47

Case 2: the reality
Real-case scenarios are typically much more complex because:

1. Compilation takes time!

2. One may need to use symbols defined in multiple object files, and compiling all of them
and/or carrying out the whole list of object file names can be tedious.

3. If a change is made in mylib or it is updated, one has to recompile mylib and relink all
their applications using mylib .

4. Developers of mylib may not be so nice: they want to hide the actual implementation.
They are ok with providing users with mylib.hpp and the corresponding machine code
(which is not human-readable), but not mylib.cpp .

5. Dealing with multiple dependencies makes the complexity increase.

This is why, typically, developers of a library provide users with header files and a library file.

18 / 47

The build process: linking against an external library

Option 1: indicate its full path during linking:

g++ main.o /path/to/mylib/libmylib.a -o main

Option 2: use the -L<dir> -l<libname> options.

g++ main.o -L/path/to/mylib -lmylib -o main

-L<dir> is not needed if the library is stored in a standard directory (typically /usr/lib or
/usr/local/lib).

 Note that libxx.a becomes -lxx .

 If the linker finds a shared library with the same name available in the system and/or in the
specified directories, it is given the precedence. If you want to override this behavior, use the -
static flag. 19 / 47

 Order matters
When linking, the order matters. Libraries should be listed in reverse order of dependency.
Libraries that depend on symbols from other libraries should come first in the list.

So, for example, if myprogram depends on mylibrary1 which on turn depends on mylibrary2 ,
then mylibrary2 should come first:

g++ myprogram.o -lmylibrary1 -lmylibrary2 -o myprogram

Other permutations are wrong:

g++ myprogram.o -lmylibrary2 -lmylibrary1 -o myprogram
g++ -lmylibrary1 -lmylibrary2 myprogram.o -o myprogram

Undefined symbols in main.o are not searched in the given libraries.

20 / 47

Inspecting the content of a library
The command nm works not only with object files and executables, but also with libraries:

$ nm -C libmylib.a
...
0000000000000000 T myfun()
...

Besides T and U , the command may use other letters. The most important ones are:

D or G : The symbol refers to initialized data.

V or W : The symbol is a weak symbol. It basically means that the (ODR) One Definition
Rule with not be applied by the linker on those symbols.

A note: If a function declared inline has been actually inlined, the corresponding symbol is not
present, since inline in this case really means inline. The same happens for a constexpr
function. If the compiler instead decides to treat them as normal functions, the symbol is marked
W . 21 / 47

Static libraries: how to use and how to build

22 / 47

Static libraries
Static libraries are the oldest and most basic way of integrating third-party code. They are basically
a collection of object files stored in a single archive.

At the linking stage of the compilation processes, the symbols (which identify objects used in the
code) that are still unresolved (i.e., they have not been defined in that translation unit) are
searched into the other object files indicated to the linker and in the indicated libraries, and
eventually the corresponding code is inserted in the executable.

23 / 47

How to build a static library?
In practice, libraries result themselves from preprocessing and compiling their corresponding
source codes. In our example:

g++ -c mylib.cpp
ar rs libmylib.a mylib.o

More in general, a static library is just an archive collecting object files:

g++ -c a.cpp b.cpp c.cpp d.cpp // Create object files.
ar rs libxx.a a.o b.o c.o
ar rs libxx.a d.o // You can add one more.

Option r adds/replaces an object in the library. Option s adds an index to the archive, making it
a searchable library.

The command ar -t libxx.a lists all object files contained in the archive.

24 / 47

Pros and cons of static libraries

Pros
The resulting executable is self-contained, i.e., it contains all the instructions required for its
execution.

Cons
If an external library receives an update (such as improvements or bugfixes), the user has to
relink its code against the new version.

We cannot load symbols dynamically, on the base of decisions taken at run-time (it's an
advanced stuff, we will deal with it later).

The executable might become large.

25 / 47

Shared libraries

26 / 47

Shared libraries
With shared libraries, the mechanism by which code from the library is integrated into your own is
very different than the static case.

The linker ensures that symbols that are still unresolved are provided by the library.

However, the corresponding code is not inserted, and the symbols remain unresolved.

Instead, a reference to the library is stored in the executable for later use by the loader (or
dynamic loader). This special program looks for the libraries and loads the code
corresponding to the symbols that are still unresolved at run-time.

 The linker and the loader are two different programs.

27 / 47

Shared libraries: the linking phase

28 / 47

Versioning and naming schemes

Version vs. release
The version is an identifier typically represented by a sequence of numbers, indicating instances
of a library with a common public interface and functionality. I recommend you to stick with the
Semantic Versioning convention.

Naming scheme
Link name: Used in the linking stage with the -lmylib option, of the form libmylib.so .

soname (Shared Object Name): Looked after by the loader, typically formed by the link
name followed by the major version number, e.g., libmylib.so.3 .

Real name: The actual file storing the library with the full version number, e.g.,
libmylib.so.3.2.4 .

29 / 47

https://semver.org/

Library versions in action
The ldd command lists all shared libraries used by an executable (or another shared library):

ldd /usr/bin/octave-cli | grep fftw3.so
libfftw3.so.3 => /lib/x86_64-linux-gnu/libfftw3.so.3 (...)

The loader searches for the library in special directories and finds /lib/x86_64-linux-
gnu/libfftw3.so.3 . This library is used when launching Octave.

If there's a new release, placing the corresponding file in the /lib/x86_64-linux-gnu directory,
and resetting symbolic links, will make Octave use the new release without recompiling (and this is
what happens when, for example, you upgrade a package via apt or similar).

30 / 47

Dependency management
$ ls -l /lib/x86_64-linux-gnu/libfftw3.so
... /lib/x86_64-linux-gnu/libfftw3.so -> libfftw3.so.3.5.8

This means that libfftw3.so.3 is a symbolic link to libfftw3.so.3.5.8 . Hence, we are
actually using version 3.5.8 of libfftw3 .

Another nice thing about shared libraries is that they may depend on another shared library. This
information can be encoded when creating the library. For instance:

ldd /usr/x86_64-linux-gnu/libumfpack.so
...
libblas.so.3 => /usr/lib/libblas.so.3

The UMFPACK library is linked against version 3 of the BLAS library. This helps to avoid using an
incorrect version of dependent libraries.

31 / 47

Shared libraries: the linking phase (1/2)
You then proceed as usual:

g++ -I/path/to/mylib -c main.cpp
g++ main.o -L/path/to/mylib -lmylib -o main

The linker looks for libmylib.so in system and/or in the specified directories, controls the
symbols it provides, and verifies if the library contains a soname . If it doesn't, the link name
libmylib.so is assumed to be also the soname .

For example, libumfpack.so provides a soname (of course, this has been taken care of by the
library developers). If you wish, you can check it:

$ objdump -p /lib/x86_64-linux-gnu/libumfpack.so | grep SONAME
 SONAME libumfpack.so.5

32 / 47

Shared libraries: the linking phase (2/2)
Being libmylib.so a shared library, the linker does not integrate the code of the resolved
symbols into the executable. Instead, it just controls that the library provides the symbols and
inserts the information about the soname of the library in the executable:

ldd main
libmylib.so.2 => /path/to/libmylib.so.2 (...)

In conclusion, linking a shared library is not more complicated than linking a static one. However,
knowing what happens "under the hood" may be useful to tackle unexpected situations.

 Even if the linker has found the library, it does not mean that the loader will find it as
well!

33 / 47

Shared libraries: the loading phase

34 / 47

Where does the loader search for shared libraries?
The loader has a different search strategy with respect to the linker. It looks in /lib , /usr/lib ,
and in all the directories contained in /etc/ld.conf or in files with the extension conf contained
in the /etc/ld.conf.d/ directory.

If you want to permanently add a directory in the search path of the loader, you need to add it to
/etc/ld.conf or add a conf file in the /etc/ld.conf.d/ directory with the name of the directory

and then launch ldconfig . This command rebuilds the database of the shared libraries and
should be called every time one adds a new library (for example, apt does it for you, and
moreover, ldconfig is launched at every boot of the computer).

Launching the command sudo ldconfig -n directory has the same effect, but in this case
modifications will remain valid until the next restart of the computer.

 All these operations require you to act as an administrator, for instance using the sudo
command. Safer alternatives are in the next slide.

35 / 47

Alternative ways of directing the loader

1. Setting the environment variable LD_LIBRARY_PATH : It contains a colon-separated list of
directory names where the loader will first look for libraries.

Permanently, for the current terminal session:
export LD_LIBRARY_PATH+=:dir1:dir2
./main

Or, temporarily valid for a single command:
LD_LIBRARY_PATH+=:dir1 ./main

2. With the special linker option, -Wl,-rpath,directory : During the compilation (linking
stage) of the executable, for instance

g++ main.cpp -Wl,-rpath,/path/to/mylib -L/path/to/mylib -lmylib

The loader will look in /path/to/mylib before the standard directories. You can use also
relative paths. 36 / 47

Shared libraries: how to build

37 / 47

How to build a shared library

1. Compile the source files:

g++ -fPIC -c mylib.cpp

PIC stands for Position-Independent Code.

2. Create the library:

g++ -shared mylib.o -Wl,-soname,libmylib.so.1 -o libmylib.so.1.0

Note: The library's real name is libmylib.so.1.0 .

3. Create symbolic links for version control:

ln -s libmylib.so.1.0 libmylib.so.1
ln -s libmylib.so.1 libmylib.so

38 / 47

Linking the executable against the shared library
Compile the executable, linking the library:

g++ -I/path/to/mylib -c main.cpp
g++ main.o -L/path/to/mylib -lmylib -o main

However, running the executable may result in an error:

./main error while loading shared libraries:
 libmylib.so.1: cannot open shared object file: No such file or directory

To fix this, direct the loader as explained in the previous section, for instance by modifying
LD_LIBRARY_PATH or changing the rpath :

g++ main.o -Wl,-rpath,/path/to/mylib -L/path/to/mylib -lmylib -o main

Now, the executable works as expected!

39 / 47

Releasing a new version
Assuming a new release (e.g., version 1.1), compile and link the new library without recompiling
the executable:

g++ -c -fPIC mylib.cpp # mylib.cpp has some new features!
g++ -shared mylib.o -Wl,-soname,libmylib.so.1 -o libmylib.so.1.1
ln -s libmylib.so.1.1 libmylib.so.1
ln -s libmylib.so.1 libmylib.so

Now, running the executable uses the updated library without recompilation or relinking.

Note
For smaller projects without versioning, you can use the same name for link name, soname , and
real name (e.g., libmylib.so). In this case, the -Wl,soname option can be omitted and the
symbolic links are not needed.

40 / 47

Summary
Object files should be compiled with the -fPIC option.

The link name is used by the linker for matching symbols.

The soname is used by the loader and is specified during library creation.

Symbolic links can direct the loader to the desired library (useful for versioning).

Use -Wl,-rpath during linking or set LD_LIBRARY_PATH for directory search during
development.

41 / 47

Shared libraries: dynamic loading

42 / 47

Dynamic loading and plugins
Shared libraries offer two intriguing features:

1. Dynamic loading of the library.

2. Dynamic loading of symbols from the library.

These features form the foundation for implementing plugins (and are also employed in Python
modules).

Dynamic loading is a fundamental aspect of a plugin architecture, allowing an application to load
parts of its implementation dynamically based on user requests.

 This is a very advanced topic. For more information, have a look at this interesting
post (source code here).

43 / 47

https://blog.theopnv.com/posts/cpp-dynamic-loading/
https://blog.theopnv.com/posts/cpp-dynamic-loading/
https://github.com/theo-pnv/Dynamic-Loading

Pros and cons of shared libraries

Pros
1. Updating a library has an immediate effect on all codes linking against it. No recompilation or

relinking is needed.

2. Executable is smaller since the code in the library is not duplicated.

3. We can load libraries and symbols runtime (plugins).

Cons
1. Executables depend on the library. If you delete the library, all codes using it won't run

anymore.

2. Both the linking phase and the loading phase need careful management, especially when
dealing with different library versions installed.

44 / 47

How to compile (and use) third-party libraries?

45 / 47

A (very) general guide
1. Obtain the library.

2. Read the documentation.

3. Compile the library.

4. Install the library, i.e., store header files and the generated (static or shared) library files into
a convenient folder.

5. Integrate it in your project, i.e., include the folder containing header files and add proper link
flags. In the case of shared libraries, don't forget to redirect the loader.

Looks easy, doesn't it?

Actually, the crux lies in step 3:

The library may have dependencies on other libraries.

Fortunately, some libraries use automatic build systems, simplifying the compilation process
... but forcing us to learn how to use these tools! 46 / 47

 Introduction to Makefile and CMake.

47 / 47

	Page 1
	Lecture 08
	Libraries: principles, building and use.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	12 Nov 2024

	Page 2
	Outline

	Page 3
	What is a library?

	Page 4
	What is a library?

	Page 5
	Why libraries are useful?

	Page 6
	Components of a C++ library (1/2)

	Page 7
	Components of a C++ library (2/2)

	Page 8
	Curated lists of awesome C++ and Python frameworks, libraries, resources, and shiny things.
	Popular GitHub repositories using C++ !
	awesome-cpp
	awesome-python
	awesome-scientific-python
	awesome-scientific-computing

	Page 9
	Types of library

	Page 10
	The build process

	Page 11
	Header-only libraries

	Page 12
	Header-only libraries: example

	Page 13
	Static vs. shared libraries

	Page 14
	A guided example
	main.cpp (developed by me)
	mylib (developed by somebody else)

	Page 15
	The build process: preprocessing + compilation

	Page 16
	Indeed, the linking phase fails...

	Page 17
	Case 1: I have access to the implementation of myfun()
	Step 1: compile the object file implementing myfun()
	Step 2: link my application against that object file

	Page 18
	Case 2: the reality

	Page 19
	The build process: linking against an external library
	Option 1: indicate its full path during linking:
	Option 2: use the -L<dir> -l<libname> options.

	Page 20
	⚠️ Order matters

	Page 21
	Inspecting the content of a library

	Page 22
	Static libraries: how to use and how to build

	Page 23
	Static libraries

	Page 24
	How to build a static library?

	Page 25
	Pros and cons of static libraries
	Pros
	Cons

	Page 26
	Shared libraries

	Page 27
	Shared libraries
	⚠️ The linker and the loader are two different programs.

	Page 28
	Shared libraries: the linking phase

	Page 29
	Versioning and naming schemes
	Version vs. release
	Naming scheme

	Page 30
	Library versions in action

	Page 31
	Dependency management

	Page 32
	Shared libraries: the linking phase (1/2)

	Page 33
	Shared libraries: the linking phase (2/2)
	⚠️ Even if the linker has found the library, it does not mean that the loader will find it as well!

	Page 34
	Shared libraries: the loading phase

	Page 35
	Where does the loader search for shared libraries?

	Page 36
	Alternative ways of directing the loader

	Page 37
	Shared libraries: how to build

	Page 38
	How to build a shared library

	Page 39
	Linking the executable against the shared library

	Page 40
	Releasing a new version
	Note

	Page 41
	Summary

	Page 42
	Shared libraries: dynamic loading

	Page 43
	Dynamic loading and plugins

	Page 44
	Pros and cons of shared libraries
	Pros
	Cons

	Page 45
	How to compile (and use) third-party libraries?

	Page 46
	A (very) general guide

	Page 47
	➡️ Introduction to Makefile and CMake.

