
Lecture 09

Optimization, debugging, profiling, testing.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

25 Nov 2024

1 / 38

Outline
1. Optimization

2. Debugging

3. Profiling

4. Testing

2 / 38

Optimization

3 / 38

Code optimization
Code optimization is the process of enhancing a program's performance, efficiency, and resource
utilization without changing its functionality. It involves improving execution speed, reducing
memory usage, and enhancing overall system responsiveness.

Optimization techniques
Compiler optimizations: Utilize compiler features to automatically enhance code during
compilation.

Algorithmic optimization: Improve the efficiency of algorithms and data structures.

Manual refactoring: Restructure code for better readability, maintainability, and performance.

Profiling and analysis: Use profiling tools to identify and optimize performance bottlenecks.

4 / 38

Optimization options
The compiler enhances performance by optimizing CPU register usage, expression refactoring,
and pre-computing constants.

Disable optimization during debugging.

Pass the -O{n} (n={0,1,2,s,3}) flag to the compiler to control optimization level, with -Os
for space optimization and -O3 for maximum optimization. Here a detailed list of
optimizations enabled with each flag.

Defining the -DNDEBUG preprocessor variable, standard assertion are ignored, resulting in
faster code.

5 / 38

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Loop unrolling
It is beneficial to unroll small loops. For example, transform:

for (int i = 0; i < n; ++i) {
 for(int k = 0; k < 3; ++k) {
 a[k] += b[k] * c[i];
 }
}

to:

for (int i = 0; i < n; ++i) {
 a[0] += b[0] * c[i];
 a[1] += b[1] * c[i];
 a[2] += b[2] * c[i];
}

Compiler may unroll loops with -funroll-loops , but better performance isn't guaranteed.

6 / 38

Prefetching constant values
Prefetch constant values inside the loop for further optimization:

for (int i = 0; i < n; ++i) {
 auto x = c[i];
 a[0] += b[0] * x;
 a[1] += b[1] * x;
 a[2] += b[2] * x;
}

7 / 38

Avoid if inside nested loops
if statements, especially in nested loops, can be costly. Consider these improvements:

for(int i = 0; i < 10000; ++i) {
 for (int j = 1; j < 10; ++j) {
 if(c[i] > 0)
 a[i][j] = 0;
 else
 a[i][j] = 1;
 }
}
// Better:
for(int i = 0; i < 10000; ++i)
 if(c[i] > 0)
 for(int j = 0; j < 10; ++j) {
 a[i][j] = 0;
 else
 for(int j = 0; j < 10; ++j) {
 a[i][j] = 1;
}

8 / 38

Sum of a vector: two strategies compared
double sum1(double *data, const size_t &size) {
 double sum{0};
 for (size_t j = 0; j < size; ++j)
 sum += data[j];
 return sum;
}

double sum2(double *data, const size_t &size) {
 double sum{0}, sum1{0}, sum2{0}, sum3{0};
 size_t j;
 for (j = 0; j < (size - 3); j += 4) {
 sum += data[j + 0];
 sum1 += data[j + 1];
 sum2 += data[j + 2];
 sum3 += data[j + 3];
 }
 for (; j < size; ++j)
 sum += data[j];
 sum += sum1 + sum2 + sum3;
 return sum;
}

9 / 38

Which one is faster, sum1 or sum2 ?
The number of floating point operations is the same in both cases!

The answer is not straightforward: it depends on the computer's architecture.

On my laptop (Intel(R) Core(TM) Ultra 7 155H CPU @ 4.80GHz), sum2 is approximately 10
times faster than sum1 with size = 1e9 ! (see examples/unrolling/unrolling.cpp).

Why? The Streaming SIMD Extensions (SSE2) instruction set of the CPU allows for parallelization
at the microcode level. It's a super-scalar architecture with multiple instruction pipelines to execute
several instructions concurrently during a clock cycle. The code of test2 better exploits this
capability.

Take-home message: Counting operations doesn't necessarily reflect performance. Compiler
optimizers can transform sum1 into sum2 automatically. Sometimes, giving it a hand is beneficial.

10 / 38

Cache friendliness
Efficiency often depends on how variables are accessed in memory. Access variables
contiguously for cache pre-fetching effectiveness. For example, if mat is a dynamic matrix
organized row-wise:

// Not cache-friendly, inefficient.
for (j = 0; j < n_cols; ++j) {
 for (i = 0; i < n_rows; ++i) {
 a += mat(i, j);
 }
}

// Cache-friendly, thus more efficient.
for (i = 0; i < n_rows; ++i) {
 for (j = 0; j < n_cols; ++j) {
 a += mat(i, j);
 }
}

11 / 38

Debugging

12 / 38

Static analysis vs. debugging (1/2)

Static analysis
Nature: Examines code without executing it.

Purpose: Identifies potential issues and coding standards violations.

Tools: Code linters, security scanners, and complexity analyzers.

Integration: Often part of development workflows or continuous integration.

Debugging
Nature: Inspects and troubleshoots code during runtime.

Purpose: Locates and resolves bugs, runtime errors, and unexpected behavior.

Tools: Debuggers with features like breakpoints and variable inspection.

Integration: Interactive process during development or post-runtime.

13 / 38

Static analysis vs. debugging (2/2)

Key differences
Timing: Static analysis is pre-runtime; debugging is during or post-runtime.

Focus: Static analysis emphasizes code quality; debugging resolves runtime issues.

Use cases: Static analysis is proactive; debugging is reactive.

Automation: Static analysis tools can be automated; debugging is more interactive.

Complementarity: Both are complementary, with static analysis preventing issues and
debugging addressing runtime problems.

14 / 38

Static analysis
Static analysis tools analyze source code by inspecting it for potential issues, vulnerabilities, or
adherence to coding standards. Common ones include:

cppcheck

cpplint

clang-tidy

Some of the checks they perform:

Automatic variable checking.

Bounds checking for array overruns.

Unused functions, variable initialization and memory duplication.

Invalid usage of Standard Template Library functions and idioms.

Missing #include s.

Memory or resource leaks, performance errors. 15 / 38

https://cppcheck.sourceforge.io/
https://github.com/cpplint/cpplint
https://clang.llvm.org/extra/clang-tidy/

Other useful tools

Cling is an interactive C++ interpreter, built on LLVM and Clang. It's part of the ROOT
project at CERN and can be integrated into a Jupyter workspace (see here). While
experimental, an interpreter aids in code prototyping.

Compiler Explorer to check how code translates into assembly language.

C++ Insights allows viewing source code through a compiler's eyes.

16 / 38

https://root.cern/cling/
https://github.com/jupyter-xeus/xeus-cling/
https://godbolt.org/
https://cppinsights.io/

Debuggers
Debuggers are software tools that enable developers to inspect, analyze, and troubleshoot code
during the development process. They provide a set of features for identifying and fixing errors in
programs.

Key features
Breakpoints: Pauses program execution at specified points to inspect variables and code.

Variable inspection: Allows developers to examine the values of variables during runtime.

Step-through execution: Enables line-by-line execution for precise debugging.

Call stack analysis: Displays the sequence of function calls leading to the current point in
code.

17 / 38

Debugging
During code development, debugging allows step-by-step execution. To use a debugger, compile
with -g (which implies no optimization). -g adds information for locating source lines in machine
code.

Two debugging types:

Static debugging: Analyze core dump if code aborts.

Dynamic debugging: Execute through a debugger, breaking at points to examine variables.

Two common debuggers are gdb and lldb . See, e.g.:

Debugging with GDB

GDB cheat sheet

GDB tutorial

18 / 38

https://www.sourceware.org/gdb/
https://lldb.llvm.org/
https://www.gnu.org/software/gdb/
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://gist.github.com/jakelevi1996/6d0add3452eb65bee9210967760a7d30

Debugging levels
Debugging can be at different levels, and using -g -O together is allowed. -g tells the compiler
to provide extra information for the debugger. However, line-by-line debugging reliability decreases
with optimization. -g implies -O0 by default.

Debugging levels and special optimization options linked to debugging:

-g0 : No debugging information.

-g1 : Minimal information for backtraces.

The default debugging level is 2.

-g3 : Extra information, including macro definitions.

-Og : Special optimization option. Enables optimizations without interfering with debugging.

19 / 38

Main commands of gdb / lldb
run : Run the program.

break : Set a breakpoint at a line/function.

where : Show location and backtrace.

print : Display variable/expression value.

list n : Show lines around line n.

next : Go to the next instruction, proceeding through subroutines.

step : Go to the next instruction, entering called functions.

continue : Continue executing.

backtrace : Print memory stack after program aborts.

quit : Exit the debugger.

help : Displays help information.

20 / 38

Other debugging tools
valgrind , a suite of tools for debugging and profiling. It can find memory leaks, unassigned

variables, or check memory usage:

Find memory leaks:

valgrind --tool=memcheck --leak-check=yes --log-file=file.log executable

Check memory usage:

valgrind --tool=massif --massif-out-file=massif.out --demangle=yes executable
ms_print massif.out > massif.txt

massif.txt indicates memory usage during the program execution.

21 / 38

https://valgrind.org/

Profiling

22 / 38

Profilers
A profiler in software development is a tool or set of tools designed to analyze the runtime
behavior and performance of a computer program. It provides detailed information about resource
utilization, execution times, and function calls during the program's execution.

Key objectives
Performance analysis: Profilers offer insights into how much time a program spends in
different functions, helping identify performance bottlenecks.

Resource usage: They measure memory consumption, CPU utilization, and other system
resources, aiding in optimizing resource-intensive operations.

Function call tracing: Profilers track the sequence of function calls, enabling developers to
understand the flow of execution.

23 / 38

gprof
gprof is the GCC simple profiler. In order to use it, compile the code with the -pg option at both

the compilation and linking stages.

When executing the code, it generates a file called gmon.out , which is then utilized by the
profiler:

gprof --demangle executable > file.txt

Then file.txt will contain valuable information about the program execution.

24 / 38

Main options of gprof
gprof offers a range of options. The main ones are:

--annotated-source[=symspec] : Prints annotated source code. If symspec is specified,
print output only for matching symbols.

-I dirs : List of directories to search for source files.

--graph[=symspec] : Prints the call graph analysis.

--demangle : Demangles mangled names (essential for C++ programs).

--display-unused-functions : As the name says.

--line : Line-by-line profiling (but maybe better use gcov).

25 / 38

callgrind
callgrind is a tool of valgrind that you may call, for instance, as:

valgrind --tool=callgrind --callgrind-out-file=grind.out --dump-line=yes ./myprog

Compile the program with -g and optimization activated. The option --dump-lines is used for
line-by-line profiling.

Afterward, post-process the binary file grind.out , e.g., using kcachegrind :

kcachegrind grind.out

It opens a graphical interface.

26 / 38

Other profilers
There are alternative profilers, some useful in a parallel environment:

perf : Lightweight CPU profiling.

gperftools : Formerly Google Performance Tools.

TAU (Tuning and Analysis Utilities) : Profiling and tracing toolkit for parallel programs.

Scalasca : Performance analysis for parallel applications on distributed memory systems.

27 / 38

https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/gperftools/gperftools
http://www.cs.uoregon.edu/Research/tau/home.php
http://icl.cs.utk.edu/scalasca

Testing

28 / 38

Verification vs. validation

Verification: Ensuring correct implementation
Conducted during development, tests individual components separately. Specific tests
demonstrate correct functionality, covering the code and checking for memory leaks.

Validation: Confirming desired behavior
Performed on the final code. Assesses if the code produces the intended outcome - convergence,
reasonable results, and expected computational complexity.

29 / 38

Types of testing

Unit testing: Testing individual components (functions, methods, or classes) to ensure each
behaves as expected. It focuses on a specific piece of code in isolation.

Integration testing: Verifying that different components/modules of the software work
together as intended. It deals with interactions between different parts of the system.

Regression testing: Ensuring recent code changes do not adversely affect existing
functionalities. It involves re-running previous tests on the modified codebase to catch
unintended side effects.

30 / 38

Importance of testing

Early detection of bugs: Testing allows early detection and fixing of bugs, reducing the cost
and time required for debugging later in the development process.

Code reliability: Testing ensures the code behaves as expected and provides reliable results
under different conditions.

Documentation: Test cases serve as documentation for how different parts of the code are
expected to work/to be used. They help other developers understand the intended behavior of
functions and classes.

31 / 38

Unit testing in C++
In C++, unit testing often uses frameworks like Google Test , Catch2 , or CTest itself (from the
CMake ecosystem).

Here's a simple example using gtest :

#include "mylibrary.h"
#include "gtest/gtest.h"

TEST(MyLibrary, AddTwoNumbers) {
 EXPECT_EQ(add(2, 3), 5);
}

int main(int argc, char **argv) {
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

In this example, we test the add function from the mylibrary module.
32 / 38

https://google.github.io/googletest/
https://github.com/catchorg/Catch2
https://cmake.org/cmake/help/latest/manual/ctest.1.html

Test-Driven Development (TDD)
TDD is a software development approach where tests are written before the actual code. The
cycle is writing a test, implementing the code to pass the test, and refactoring.

Advantages

TDD encourages modular and testable code, ensuring all parts of the codebase are covered by
tests. It also starts by thinking at how code should be used (bottom-up strategy), possibly guiding
the design of the interface exposed.

Process

1. Write a test defining a function or improvements succinctly.

2. Run the test to ensure it fails, showing it doesn't pass.

3. Write the simplest code to make the test pass.

4. Run the test and verify it passes.

5. Refactor the code for better structure or performance. 33 / 38

Continuous Integration (CI) and testing

CI: Frequently integrating code changes into a shared repository. Automated builds and tests
ensure new changes don't break existing functionalities.

Benefits:

Early detection of integration issues.

Regular validation of code against the test suite.

Confidence in the stability of the codebase.

Popular CI Tools:

Jenkins

Travis CI

GitHub Actions

GitLab CI 34 / 38

https://www.jenkins.io/
https://www.travis-ci.com/
https://github.com/features/actions
https://docs.gitlab.com/ee/ci/

Coverage
Code coverage is a metric used in software testing to measure the extent to which source code is
executed during the testing process. It provides insights into which parts of the codebase have
been exercised by the test suite and which parts remain untested.

Key concepts
Lines of code: Code coverage is often expressed as a percentage of lines of code that have
been executed by tests. The goal is to have as close to 100% coverage as possible.

Branches and paths: In addition to lines, code coverage can also consider branches and
execution paths within the code. This provides a more detailed analysis of the code's
behavior.

35 / 38

Coverage with gcov
GCC supports program coverage with gcov . Compile with -g -fprofile-arcs -ftest-
coverage and no optimization. For shared objects with dlopen , add the option -Wl,--dynamic-
list-data .

Run the code, producing gcda and gcno files. Use gcov utility:

gcov [options] source_file_to_examine [or executable]

Text files with code and execution counts for each line are created.

Main options of gcov

gcov offers various options:

--demangled-names : Demangle names, useful for C++.

--function-summaries : Output summaries for each function.

--branch-probabilities : Write branch frequencies to the output file. 36 / 38

lcov and genhtml : nice graphical tools for gcov
The gcov output is verbose. With lcov and genhtml , you get a graphical view:

Compile with gcov rules, then:

lcov --capture --directory project_dir --output-file cov.info
genhtml cov.info --output-directory html

project_dir is the directory with gcda and gcno files. In the html directory, open
index.html in your browser.

37 / 38

 Introduction to Python.

38 / 38

	Page 1
	Lecture 09
	Optimization, debugging, profiling, testing.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	25 Nov 2024

	Page 2
	Outline

	Page 3
	Optimization

	Page 4
	Code optimization
	Optimization techniques

	Page 5
	Optimization options

	Page 6
	Loop unrolling

	Page 7
	Prefetching constant values

	Page 8
	Avoid if inside nested loops

	Page 9
	Sum of a vector: two strategies compared

	Page 10
	Which one is faster, sum1 or sum2?

	Page 11
	Cache friendliness

	Page 12
	Debugging

	Page 13
	Static analysis vs. debugging (1/2)
	Static analysis
	Debugging

	Page 14
	Static analysis vs. debugging (2/2)
	Key differences

	Page 15
	Static analysis

	Page 16
	Other useful tools

	Page 17
	Debuggers
	Key features

	Page 18
	Debugging

	Page 19
	Debugging levels

	Page 20
	Main commands of gdb/lldb

	Page 21
	Other debugging tools

	Page 22
	Profiling

	Page 23
	Profilers
	Key objectives

	Page 24
	gprof

	Page 25
	Main options of gprof

	Page 26
	callgrind

	Page 27
	Other profilers

	Page 28
	Testing

	Page 29
	Verification vs. validation
	Verification: Ensuring correct implementation
	Validation: Confirming desired behavior

	Page 30
	Types of testing

	Page 31
	Importance of testing

	Page 32
	Unit testing in C++

	Page 33
	Test-Driven Development (TDD)
	Advantages
	Process

	Page 34
	Continuous Integration (CI) and testing

	Page 35
	Coverage
	Key concepts

	Page 36
	Coverage with gcov
	Main options of gcov

	Page 37
	lcov and genhtml: nice graphical tools for gcov

	Page 38
	➡️ Introduction to Python.

