
Lecture 10

Introduction to Python. Built-in data types. Variables, lists,
tuples, dictionaries, sets. Control structures. Functions.
Docstrings.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

26 Nov 2024

1 / 93

Outline
1. Introduction

2. Built-in data types
Numeric, Boolean, strings

Lists and tuples

Sets and dictionaries

3. Control structures

4. Comprehensions

5. Exceptions

6. Functions

7. Docstrings

2 / 93

Introduction

3 / 93

Why Python?
Readability and simplicity: Python's syntax is designed for readability, making it easy for
beginners and promoting clean code in large projects.

Versatility: Supports various programming paradigms (procedural, OO, functional).

Extensive standard library: Comes with a comprehensive standard library, reducing the
need for writing code from scratch and promoting code reusability.

Large and active community: Boasts a vibrant community, fostering collaboration, and
providing a wealth of third-party libraries and online resources.

Data Science and Machine Learning: Preferred language for data science and machine
learning with powerful libraries like NumPy, SciPy, Pandas, PyTorch, and TensorFlow.

Cross-platform compatibility: Code written in Python can run on different operating systems
without modification.

Industry adoption: Widely adopted in countless startups and enterprises.

4 / 93

Setting up a Python environment
To work with Python, you need to set up a development environment.

Here are the basic steps:

Install Python: Download and install Python (version) from the official Python website .
Advanced users may want to have a look at PyPy .

Integrated Development Environment (IDE): Choose an IDE such as PyCharm, VSCode,
or Jupyter Notebook for a more interactive development experience. You can even use online
platforms like Google Colab and JupyterLab .

Package management: Utilize tools like pip to install and manage third-party packages.

(Advanced users) Virtual environments: Use virtual environments, such as conda to
isolate project dependencies and avoid conflicts between different projects.

5 / 93

https://www.python.org/
https://www.pypy.org/
https://colab.google/
https://jupyter.org/try
https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Structure of a basic Python program
A Python program typically consists of the following components:

Comments: Lines starting with # are comments. They are ignored by the Python interpreter
and serve as notes for developers.

Statements: Python code is composed of statements, which are instructions that the
interpreter can execute.

Indentation: Python uses indentation to define code blocks. Consistent indentation is crucial
for proper program structure.

6 / 93

Hello, world!
This is a comment.
print("Hello, World!") # This is also a comment.

x = 3

Code block with proper indentation.
if x > 0:
 print("Positive")

7 / 93

Definitions
A value is a piece of data that a computer program works with such as a number or text. There
are different types of values: 42 is an integer and "Hello!" is a string. A variable is a name
that refers to a value. In mathematics and statistics, we usually use variable names like and .
In Python, we can use any word as a variable name as long as it starts with a letter or an
underscore. However, it should not be a reserved word in Python such as for , while , class ,
lambda , etc. as these words encode special functionality in Python that we don't want to

overwrite!

It can be helpful to think of a variable as a box that holds some information (a single number, a
vector, a string, etc). We use the assignment operator = to assign a value to a variable.

8 / 93

https://docs.python.org/3.12/reference/lexical_analysis.html#keywords

Built-in data types

9 / 93

Python as a strongly, dynamically typed language
Python typing is dynamic so you can change a string variable to an int (in a static language
you can't):

x = 'somestring'
x = 50

Python typing is strong so you can't merge types:

'foo' + 3 # TypeError: cannot concatenate 'str' and 'int' objects

In weakly-typed languages (such as Javascript) this happens:

 'foo' + 3 = 'foo3'

10 / 93

Built-in data types (1/2)
See the Python 3 documentation for a summary of the standard built-in Python datatypes.

Type name Type Category Description Example

int Numeric Type integer number 42

float Numeric Type real number 3.14159

complex Numeric Type complex number 1.0 + 2.0j

bool Boolean Values true or false True

str Sequence Type text "I Can Has Cheezburger?"

11 / 93

https://docs.python.org/3.12/library/stdtypes.html

Built-in data types (2/2)
Type
name

Type
Category

Description Example

list
Sequence
Type

a collection of objects - mutable
& ordered

['Ali', 'Xinyi', 'Miriam']

tuple
Sequence
Type

a collection of objects -
immutable & ordered

('Thursday', 6, 9, 2018)

set Set Type
a collection of unique objects -
mutable & unordered

{'jack', 'sjoerd'}

dict
Mapping
Type

mapping of key-value pairs
{'name':'DSAI', 'code':123,

'credits':6}

NoneType Null Object represents no value None

12 / 93

Numeric, Boolean, strings

13 / 93

Numeric data types
There are three distinct numeric types: integers , floating point numbers , and complex
numbers . We can determine the type of an object in Python using type() . We can print the value
of the object using print() .

x = 42
type(x) # int
print(x) # 42

pi = 3.14159
type(pi) # float

z = 1 + 3j # complex
print(abs(z))
import cmath
cmath.phase(z)

14 / 93

Arithmetic operators
Below is a table of the syntax for common arithmetic operations in Python:

Operator Description

+ addition

- subtraction

* multiplication

/ division

** exponentiation

// integer division / floor division

% modulo

15 / 93

Arithmetic operators: examples
1 + 2 + 3 + 4 + 5 # 15
2 * 3.14159 # 6.28318
2 ** 10 # 1024

Division may produce a different dtype than expected, it will change int to float .

int_2 = 2
type(int_2) # int
int_2 / int_2 # 1.0
type(int_2 / int_2) # float

But the syntax // allows us to do integer division (aka floor division) and retain the int data
type, it always rounds down.

101 / 2 # 50.5
101 // 2 # 50 (floor division: always rounds down).

16 / 93

Boolean
The Boolean (bool) type has two values: True and False .

We can compare objects using comparison operators, and we'll get back a Boolean result:

Operator Description

x == y x is equal to y

x != y x is not equal to y

x > y x is greater than y

x >= y x is greater than or equal to y

x < y x is less than y

x <= y x is less than or equal to y

x is y x is the same object as y
17 / 93

Boolean operators
We also have so-called boolean operators which also evaluate to either True or False :

Operator Description: True if

x and y both x and y are True

x or y at least one of x and y is True

not x x is False

Python also has bitwise operators like AND (&), OR (|), XOR (^), NOT (~), shift (<< and
>>).

18 / 93

https://wiki.python.org/moin/BitwiseOperators

Strings
Strings represent sequences of characters and are widely used in Python.

String creation: Strings can be created using single (') or double (") quotes.

String operations: Concatenation (+), repetition (*), and indexing.

Example

String creation.
message = "Hello, Python!"

message_twice = message * 2 # "Hello, Python!Hello, Python!"

String operations.
greeting = "Hello, "
name = "Alice"
full_greeting = greeting + name # Concatenation.

19 / 93

String manipulation (1/2)
String methods.
message = "Hello, Python!"

Length of a string.
length = len(message)

Upper and lower case.
upper_case = message.upper() # Return a new string.
lower_case = message.lower() # Return a new string.

String formatting.
formatted_message = f"Message: {message}"

20 / 93

String manipulation (2/2)
all_caps = "HOW ARE YOU TODAY?"
all_caps.split() # ['HOW', 'ARE', 'YOU', 'TODAY?']
all_caps.count("O") # 3

caps_list = list(all_caps)
"".join(caps_list) # 'HOW ARE YOU TODAY?'
"-".join(caps_list) # 'H-O-W- -A-R-E- -Y-O-U- -T-O-D-A-Y-?'
"".join(caps_list).lower().split(" ") # ['how', 'are', 'you', 'today?']

There are many string methods. Check out the documentation .

21 / 93

https://docs.python.org/3.12/library/stdtypes.html#string-methods

String formatting
Python has ways of creating strings by filling in the blanks and formatting them nicely. This is
helpful for when you want to print statements that include variables or statements. There are a few
ways of doing this but I use and recommend f-strings which were introduced in Python 3.6. All
you need to do is put the letter f out the front of your string and then you can include variables
with curly-bracket notation {} .

name = "Newborn Baby"
age = 4 / 12
day = 26
month = 7
year = 2024
template_new = f"Hello, my name is {name}. I am {age:.2f} years old. I was born {day}/{month:02}/{year}."
template_new

'Hello, my name is Newborn Baby. I am 0.33 years old. I was born 26/07/2024.'

See format code options here .

22 / 93

https://docs.python.org/3.6/whatsnew/3.6.html#whatsnew36-pep498
https://docs.python.org/3.12/library/string.html#format-specification-mini-language

Lists and tuples

23 / 93

Lists and tuples
Lists and tuples are versatile data structures in Python.

Lists: Mutable, ordered collections of items. Elements can be added, removed, or modified.

Tuples: Immutable, ordered collections. Once defined, elements cannot be changed.

Example

List.
numbers = [1, 2, 3, 4, 5]

Tuple.
coordinates = (2, 3)

24 / 93

List operations
List creation.
my_list = [1, 2, "THREE", 4, 0.5]
another_list = [1, "two", [3, 4, "five"], True, None, {"key": "value"}]
numbers = [1, 2, 3, 4, 5]

len(numbers) # 5

Adding elements.
my_list.append([6, 7]) # [1, 2, "THREE", 4, 0.5, [6, 7]]
my_list.extend([6, 7]) # [1, 2, "THREE", 4, 0.5, 6, 7]

Removing elements.
numbers.remove(3) # [1, 2, 4, 5]
popped_value = numbers.pop() # popped_value = 5, numbers = [1, 2, 4]

You can see the documentation for more list methods .

25 / 93

https://docs.python.org/3.12/tutorial/datastructures.html#more-on-lists

Tuple operations
Tuple creation.
my_tuple = (1, 2, "THREE", 4, 0.5)
coordinates = (2, 3)

Unpacking.
x, y = coordinates

Concatenation.
combined = coordinates + (4, 5) # (2, 3, 4, 5)

Tuple repetition.
repeated = coordinates * 3 # (2, 3, 2, 3, 2, 3)

26 / 93

Indexing
We can access values inside a list, tuple, or string using square bracket syntax. Python uses zero-
based indexing, which means the first element of the list is in position 0, not position 1.

my_list = [1, 2, 'THREE', 4, 0.5]
my_list[0] # 1
my_list[2] # 'THREE'
len(my_list) # 5

my_list[5] # IndexError: list index out of range

We can use negative indices to count backwards from the end of the list.

my_list = [1, 2, 'THREE', 4, 0.5]
my_list[-1] # 0.5
my_list[-2] # 4

27 / 93

Slicing
We can use the colon : to access a sub-sequence. This is called slicing.

my_list[1:3] # [2, 'THREE']

Note from the above that the start of the slice is inclusive and the end is exclusive. So
my_list[1:3] fetches elements 1 and 2, but not 3.

Strings behave the same as lists and tuples when it comes to indexing and slicing. Remember, we
think of them as a sequence of characters.

alphabet = "abcdefghijklmnopqrstuvwxyz"
alphabet[0] # 'a'
alphabet[-1] # 'z'
alphabet[-3] # 'x'
alphabet[:5] # 'abcde'
alphabet[12:20] # 'mnopqrst'

28 / 93

Sets and dictionaries

29 / 93

Sets
Another built-in Python data type is the set , which stores an unordered list of unique items.
Being unordered, sets do not record element position or order of insertion and so do not support
indexing.

s = {2, 3, 5, 11}
{1, 2, 3} == {3, 2, 1} # True
[1, 2, 3] == [3, 2, 1] # False
s.add(2) # Does nothing.

Since element are stored unordered, sets can't be indexed:

s[0]

TypeError: 'set' object is not subscriptable

30 / 93

Dictionaries
Dictionaries are key-value pairs, allowing efficient data retrieval.

Creating dictionaries: Define key-value pairs using curly braces {} .

Accessing values: Retrieve values using keys.

Example

Dictionary creation.
student = {"name": "Alice", "age": 20, "grade": "A"}

student_name = student["name"] # Access value by key.

student["city"] = "New York" # Add new key-value pair.
student["age"] = 21 # Modify value by key.

del student["grade"] # Remove key.

31 / 93

Casting
Sometimes we need to explicitly cast a value from one type to another. Python tries to do the
conversion, or throws an error if it can't.

x = 5.0 # float
x = int(5.0) # int
x = str(5.0) # string '5.0'
str(5.0) == 5.0 # False
int(5.3) # 5

original_set = {1, 2, 3, 4, 5}
converted_tuple = tuple(original_set)

original_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
converted_list = list(original_dict.items())

float("hello")

ValueError: could not convert string to float: 'hello'
32 / 93

Empties
Sometimes you'll want to create empty objects that will be filled later on.

lst = list() # Or:
lst = []

There's no real difference between the two methods above, [] is apparently marginally faster .

tup = tuple() # Or:
tup = ()

st = set()

dic = dict() # Or:
dic = {}

33 / 93

https://stackoverflow.com/questions/2972212/creating-an-empty-list-in-python

None
NoneType is its own type in Python. It only has one possible value, None - it represents an object

with no value.

x = None
print(x)

None

type(x)

NoneType

34 / 93

Control structures

35 / 93

Conditionals (1/2)
Conditional statements allow us to write programs where only certain blocks of code are

executed depending on the state of the program. Let's look at some examples and take note of the
keywords, syntax and indentation.

name = "Tom"

if name.lower() == "tom":
 print("That's my name too!")
elif name.lower() == "santa":
 print("That's a funny name.")
else:
 print(f"Hello {name}! That's a cool name!")
print("Nice to meet you!")

That's my name too!
Nice to meet you!

36 / 93

https://docs.python.org/3.12/tutorial/controlflow.html

Conditionals (2/2)
The main points to notice:

Use keywords if , elif and else .

The colon : ends each conditional expression.

Indentation (by 4 empty space) defines code blocks.

In an if statement, the first block whose conditional statement returns True is executed
and the program exits the if block.

if statements don't necessarily need elif or else .

elif lets us check several conditions.

else lets us evaluate a default block if all other conditions are False .

The end of the entire if statement is where the indentation returns to the same level as the
first if keyword.

37 / 93

Conditionals: nesting
If statements can also be nested inside of one another:

name = "Super Tom"

if name.lower() == "tom":
 print("That's my name too!")
elif name.lower() == "santa":
 print("That's a funny name.")
else:
 print(f"Hello {name}! That's a cool name.")
 if name.lower().startswith("super"):
 print("Do you really have superpowers?")

print("Nice to meet you!")

Hello Super Tom! That's a cool name.
Do you really have superpowers?
Nice to meet you!

38 / 93

Inline if / else
We can write simple if statements inline, i.e., in a single line, for simplicity (similar to the ternary
operator (condition) ? if_true : if_false in C++).

words = ["the", "list", "of", "words"]

x = "long list" if len(words) > 10 else "short list"

This is equivalent to:
if len(words) > 10:
 x = "long list"
else:
 x = "short list"

39 / 93

Truth value testing (1/2)
Any object can be tested for truth in Python, for use in if and while statements.

True values: all objects return True unless they are a bool object with value False or
have len() == 0

False values: None , False , 0 , empty sequences and collections: '' , () , [] , {} ,
set()

Read more in the documentation here .

x = 1

if x:
 print("I'm truthy!")
else:
 print("I'm falsey!")

I'm truthy!
40 / 93

https://docs.python.org/3.12/library/stdtypes.html#truth-value-testing

Truth value testing (2/2)
x = False

if x:
 print("I'm truthy!")
else:
 print("I'm falsey!")

I'm falsey!

x = []

if x:
 print("I'm truthy!")
else:
 print("I'm falsey!")

I'm falsey!

41 / 93

for loops (1/2)
for loops allow us to execute code a specific number of times.

for n in [2, 7, -1, 5]:
 print(f"The number is {n} and its square is {n**2}")
print("I'm outside the loop!")

The number is 2 and its square is 4
The number is 7 and its square is 49
The number is -1 and its square is 1
The number is 5 and its square is 25
I'm outside the loop!

42 / 93

for loops (2/2)
The main points to notice:

Keyword for begins the loop. Colon : ends the first line of the loop.

Block of code indented is executed for each value in the list (hence the name for loops).

The loop ends after the variable n has taken all the values in the list.

We can iterate over any kind of iterable: range , string , list , tuple , set , dict .

An iterable is really just any object with a sequence of values that can be looped over. In this
case, we are iterating over the values in a list.

word = "Python"
for letter in word:
 print("Gimme a " + letter + "!")

print(f"What's that spell? {word}!")

43 / 93

range (1/2)
A very common pattern is to use for with the range() . range() gives you a sequence of
integers up to some value (non-inclusive of the end-value) and is typically used for looping.

range(10)

range(0, 10)

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

44 / 93

range (2/2)

for i in range(10):
 print(i)

We can also specify a start value and a skip-by value with range :

for i in range(1, 101, 10):
 print(i)

1
11
21
...
91

45 / 93

Nested for loops
We can write a loop inside another loop to iterate over multiple dimensions of data:

for x in [1, 2, 3]:
 for y in ["a", "b", "c"]:
 print((x, y))

(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')

46 / 93

zip
zip returns a zip object which is an iterable of tuples.

for i in zip(list_1, list_2):
 print(i)

(0, 'a')
(1, 'b')
(2, 'c')

We can even unpack these tuples directly in the for loop:

for i, j in zip(list_1, list_2):
 print(i, j)

0 a
1 b
2 c 47 / 93

enumerate
enumerate adds a counter to an iterable which we can use within the loop.

for i in enumerate(list_2):
 print(i)

(0, 'a')
(1, 'b')
(2, 'c')

for n, i in enumerate(list_2):
 print(f"index {n}, value {i}")

index 0, value a
index 1, value b
index 2, value c

48 / 93

Looping over dictionaries
We can loop through key-value pairs of a dictionary using .items() . The general syntax is for
key, value in dictionary.items() .

courses = {"Programming": "awesome!",
 "Statistics": "naptime!"}

for course, description in courses.items():
 print(f"{course} is {description}")

Programming is awesome!
Statistics is naptime!

for n, (course, description) in enumerate(courses.items()):
 print(f"Item {n}: {course} is {description}")

Item 0: Programming is awesome!
Item 1: Statistics is naptime! 49 / 93

while loops
We can also use a while loop to excute a block of code until a condition is met.

n = 10
while n > 0:
 print(n)
 n -= 1

10
9
8
...
1

50 / 93

https://docs.python.org/3.12/reference/compound_stmts.html#while

break
Hence, in some cases, you may want to force a loop to stop based on some criteria, using the
break keyword.

n = 123
i = 0
while n != 1:
 print(int(n))
 if n % 2 == 0: # n is even.
 n = n / 2
 else: # n is odd.
 n = 3 * n + 1
 i += 1
 if i == 10:
 print(f"Ugh, too many iterations!")
 break

...
Ugh, too many iterations!

51 / 93

continue
The continue keyword is similar to break but won't stop the loop. Instead, it just restarts the
loop from the next iteration.

n = 10
while n > 0:
 if n % 2 != 0: # n is odd.
 n = n - 1
 continue
 print(n)
 n = n - 1

10
8
6
4
2

52 / 93

Comprehensions

53 / 93

Comprehensions
Comprehensions allow us to build lists/tuples/sets/dictionaries in one convenient, compact line of
code. I use these quite a bit! Below is a standard for loop you might use to iterate over an
iterable and create a list:

subliminal = ['Tom', 'ingests', 'many', 'eggs', 'to', 'outrun', 'large', 'eagles', 'after', 'running', 'near', '!']
first_letters = []
for word in subliminal:
 first_letters.append(word[0])
print(first_letters)

['T', 'i', 'm', 'e', 't', 'o', 'l', 'e', 'a', 'r', 'n', '!']

List comprehension allows us to do this in one compact line:

letters = [word[0] for word in subliminal] # List comprehension.
letters

['T', 'i', 'm', 'e', 't', 'o', 'l', 'e', 'a', 'r', 'n', '!']
54 / 93

Multiple comprehensions
We can make things more complicated by doing multiple iteration or conditional iteration:

[(i, j) for i in range(3) for j in range(4)]

[(0, 0), (0, 1), (0, 2), ..., (2, 3)]

[i for i in range(11) if i % 2 == 0]

[0, 2, 4, 6, 8, 10]

[-i if i % 2 else i for i in range(11)]

[0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10]

55 / 93

Set and dict comprehensions
Set comprehension:

words = ['hello', 'goodbye', 'the', 'antidisestablishmentarianism']
y = {word[-1] for word in words} # {'e', 'o', 'm'}

Dictionary comprehension:

word_lengths = {word:len(word) for word in words}
{'hello': 5, 'goodbye': 7, 'the': 3, 'antidisestablishmentarianism': 28}

Tuple comprehension doesn't work as you might expect: we get a generator instead (explained
below).

56 / 93

Exceptions

57 / 93

Exceptions
If something goes wrong, we don't want our code to crash - we want it to fail gracefully. In
Python, this can be accomplished using try / except . Here is a basic example:

this_variable_does_not_exist
print("Another line") # Code fails before getting to this line.

NameError: name 'this_variable_does_not_exist' is not defined

58 / 93

try-except

try:
 this_variable_does_not_exist
except:
 pass # Do nothing.
 print("You did something bad! But I won't raise an error.")
print("Another line")

You did something bad! But I won't raise an error.
Another line

Python tries to execute the code in the try block. If an error is encountered, we catch this in the
except block (also called try / catch in other languages). There are many different error types,

or exceptions - we saw NameError above.

5 / 0

ZeroDivisionError: division by zero 59 / 93

A complete example
x = 2
y = 0

try:
 result = x / y
except ZeroDivisionError:
 print("Sorry! You are dividing by zero.")
else:
 print("Yeah! Your answer is: ", result)
finally:
 # This block is always executed
 # regardless of exception generation.
 print('This is always executed')

60 / 93

More exception types
my_list = [1, 2, 3]
my_list[5]

IndexError: list index out of range

my_tuple = (1,2,3)
my_tuple[0] = 0

TypeError: 'tuple' object does not support item assignment

61 / 93

Raise exceptions
We can also write code that raises an exception on purpose, using raise :

def add_one(x):
 if not isinstance(x, float) and not isinstance(x, int):
 raise TypeError(f"Sorry, x must be numeric, you entered a {type(x)}.")

 return x + 1

add_one("blah")

TypeError: Sorry, x must be numeric, you entered a <class 'str'>.

This is useful when your function is complicated and would fail in a complicated way, with a weird
error message. You can make the cause of the error much clearer to the user of the function.

Finally, we can even define our own exception types by inheriting from the Exception class -
we'll explore classes and inheritance in the next lecture!

62 / 93

Functions

63 / 93

Functions
A function is a reusable piece of code that can accept input parameters, also known as
arguments. For example, let's define a function called square which takes one input parameter
n and returns the square n**2 :

def square(n):
 n_squared = n**2
 return n_squared

square(2) # 4
square(100) # 10000
square(12345) # 152399025

Functions begin with the def keyword, then the function name, arguments in parentheses, and
then a colon (:). The code executed by the function is defined by indentation. The output or
return value of the function is specified using the return keyword.

64 / 93

https://docs.python.org/3.12/tutorial/controlflow.html#defining-functions

Local variables
When you create a variable inside a function, it is local, which means that it only exists inside the
function. For example:

def cat_string(str1, str2):
 string = str1 + str2
 return string

cat_string('My name is ', 'Tom')

'My name is Tom'

string

NameError: name 'string' is not defined

65 / 93

Mutable vs. immutable input arguments (1/2)
Strings and tuples are immutable types which means they can't be modified. Lists are mutable and
we can assign new values for its various entries. This is the main difference between lists and
tuples.

names_list = ["Indiana", "Fang", "Linsey"]
names_list[0] = "Cool guy" # Ok.

names_tuple = ("Indiana", "Fang", "Linsey")
names_tuple[0] = "Not cool guy"

TypeError: 'tuple' object does not support item assignment

Same goes for strings. Once defined we cannot modifiy the characters of the string.

my_name = "Tom"
my_name[-1] = "q"

TypeError: 'str' object does not support item assignment 66 / 93

Mutable vs. immutable input arguments (2/2)
x = ([1, 2, 3], 5)
x[1] = 7

TypeError: 'tuple' object does not support item assignment

x[0][1] = 4 # Ok. We are modifying a list here.

 Warning
In Python, input arguments are passed by reference.

When mutable objects are passed to a function, changes made to the object inside the
function affect the original object outside the function.

When immutable objects are passed to a function, they cannot be modified inside the
function, hence the original object remains unchanged.

67 / 93

Side effects
If a function changes the variables passed into it, then it is said to have side effects. For example:

def silly_sum(my_list):
 my_list.append(0)
 return sum(my_list)

l = [1, 2, 3, 4]
out = silly_sum(l) # 10

The above looks like what we wanted? But it changed our l object.

l

[1, 2, 3, 4, 0]

If your function has side effects like this, you must mention it in the documentation.

68 / 93

Null return type
If you do not specify a return value, the function returns None when it terminates:

def f(x):
 x + 1 # No return.
 if x == 999:
 return
print(f(0))

None

69 / 93

Default arguments (1 / 2)
Sometimes it is convenient to have default values for some arguments in a function. Because they
have default values, these arguments are optional, and are hence called optional arguments. For
example:

def repeat_string(s, n = 2):
 return s * n

repeat_string("abc", 5)

'abcabcabcabcabc'

repeat_string("abc")

'abcabc'

You can have any number of required arguments and any number of optional arguments.
70 / 93

Default arguments (2 / 2)
All the optional arguments must come after the required arguments. The required arguments are
mapped by the order they appear. The optional arguments can be specified out of order when
using the function.

def example(a, b, c = "DEFAULT", d = "DEFAULT"):
 print(a, b, c, d)

example(1, 2, 3, 4) # 1 2 3 4

Using the defaults for c and d :

example(1, 2) # 1 2 DEFAULT DEFAULT

Specifying c and d as keyword arguments (i.e. by name):

example(1, 2, c=3, d=4) # 1 2 3 4

71 / 93

Type hints
Type hinting is exactly what it sounds like, it hints at the data type of function arguments. You

can indicate the type of an argument in a function using the syntax argument : dtype , and the
type of the return value using def func() -> dtype . Let's see an example:

def repeat_string(s: str, n: int = 2) -> str:
 return s * n

Type hinting just helps your users and IDE identify dtypes and possible bugs. It's just another level
of documentation. They do not force users to use that date type, for example, I can still pass an
dict to repeat_string if I want to:

repeat_string({'key_1': 1, 'key_2': 2})

TypeError: unsupported operand type(s) for *: 'dict' and 'int'

72 / 93

https://docs.python.org/3.12/library/typing.html

Multiple return values (1/2)
In many programming languages, functions can only return one object. That is technically true in
Python too, but there is a workaround, which is to return a tuple.

def sum_and_product(x, y):
 return (x + y, x * y)

sum_and_product(5, 6) # (11, 30)

The parentheses can be omitted (and often are), and a tuple is implicitly returned as defined by
the use of the comma:

def sum_and_product(x, y):
 return x + y, x * y

sum_and_product(5, 6) # (11, 30)

73 / 93

Multiple return values (2/2)
It is common to immediately unpack a returned tuple into separate variables, so it really feels like
the function is returning multiple values:

s, p = sum_and_product(5, 6)

As an aside, it is conventional in Python to use _ for values to be discarded:

s, _ = sum_and_product(5, 6)

 Warning: _ becomes an actual variable name!

74 / 93

Unpacking (1/3)
In Python, the asterisk (*) is used for unpacking iterable objects. It allows you to extract the
elements from an iterable (e.g., a list, tuple) or the key-value pairs from a dictionary.

Here are a few common use cases for the asterisk for unpacking:

1. Unpacking in function calls: When calling a function, you can use the asterisk to unpack
the elements of a list, tuple, or any iterable as individual arguments to the function.

def add_numbers(a, b, c):
 return a + b + c

numbers = [1, 2, 3]
result = add_numbers(*numbers)
print(result) # 6

75 / 93

Unpacking (2/3)

2. Unpacking in iterables: You can use the asterisk to unpack elements from one iterable into
another.

first_list = [1, 2, 3]
second_list = [4, 5, 6]
combined_list = [*first_list, *second_list]
print(combined_list) # [1, 2, 3, 4, 5, 6]

3. Unpacking in tuple assignment: The asterisk can be used in tuple assignment to capture
multiple elements at once.

first, *rest = [1, 2, 3, 4, 5]
print(first) # 1
print(rest) # [2, 3, 4, 5]

76 / 93

Unpacking (3/3)
4. Unpacking in dictionary merging: When merging dictionaries, the double asterisk (**) is

used to unpack the key-value pairs from one dictionary into another.

dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}
merged_dict = {**dict1, **dict2}
print(merged_dict) # {'a': 1, 'b': 2, 'c': 3, 'd': 4}

5. Extended unpacking in function definitions: In function definitions, you can use the
asterisk to collect variable positional arguments (*args) and variable keyword arguments
(**kwargs).

def example_function(a, b, *args, **kwargs):
 # a and b are regular arguments
 # args is a tuple of positional arguments
 # kwargs is a dictionary of keyword arguments
 pass

77 / 93

Functions with arbitrary number of arguments: *args
In Python, *args and **kwargs are used in function definitions to allow a variable number of
arguments.

*args (Arbitrary positional arguments): It allows a function to accept a variable number of
positional arguments. The *args parameter is used to collect any number of positional
arguments into a tuple.

def print_args(*args):
 for arg in args:
 print(arg)

print_args(1, 2, 3, "four")

78 / 93

Functions with arbitrary number of arguments:
**kwargs

**kwargs (Arbitrary keyword arguments): It allows a function to accept a variable number of
keyword arguments. The **kwargs parameter is used to collect any number of keyword
arguments into a dictionary.

def print_kwargs(**kwargs):
 for key, value in kwargs.items():
 print(f"{key}: {value}")

print_kwargs(name="John", age=25, city="New York")

79 / 93

Combining *args and **kwargs
You can use both *args and **kwargs in the same function definition to accept any
combination of positional and keyword arguments.

def print_args_and_kwargs(*args, **kwargs):
 for arg in args:
 print(arg)
 for key, value in kwargs.items():
 print(f"{key}: {value}")

print_args_and_kwargs(1, 2, 3, name="John", age=25)

1
2
3
name: John
age: 25

80 / 93

Example
def data_summary(*args, **kwargs):
 round_digits = kwargs.get('round_digits', 2)
 for i, data in enumerate(args, 1):
 mean = round(sum(data) / len(data), round_digits)
 print(f"Dataset {i}: Mean = {mean}")

Example usage
data_summary([1, 2, 3, 4], [10, 20, 30, 40], round_digits=1)

Dataset 1: Mean = 2.5
Dataset 2: Mean = 25.0

81 / 93

Functions as a data type
In Python, functions are actually a data type:

def do_nothing(x):
 return x

type(do_nothing) # function

This means you can pass functions as arguments into other functions.

def square(y):
 return y ** 2

def evaluate_function_on_x_plus_1(fun, x):
 return fun(x + 1)

evaluate_function_on_x_plus_1(square, 5) # 36

82 / 93

Anonymous functions
There are two ways to define functions in Python. The way we've been using up until now:

def add_one(x):
 return x + 1

add_one(7.2) # 8.2

Or by using the lambda keyword:

add_one = lambda x: x + 1
type(add_one) # function

The two approaches above are identical. The one with lambda is called an anonymous
function. Anonymous functions can only take up one line of code, so they aren't appropriate in
most cases, but can be useful for smaller things.

83 / 93

Generators (1/3)
Recall list comprehension:

[n for n in range(10)]

Comprehensions evaluate the entire expression at once, and then returns the full data product.
Sometimes, we want to work with just one part of our data at a time, for example, when we can't fit
all of our data in memory. For this, we can use generators.

(n for n in range(10))

<generator object at 0x7f06c9b9ba70>

Notice that we just created a generator object . Generator objects are like a recipe for
generating values. They don't actually do any computation until they are asked to.

84 / 93

Generators (2/3)
We can get values from a generator in three main ways:

Using next()

Using list()

Looping

gen = (n for n in range(10))
next(gen) # 0
next(gen) # 1

Once the generator is exhausted, it will raise a StopIteration exception.

We can see all the values of a generator using list() but this defeats the purpose of using a
generator in the first place:

gen = (n for n in range(10))
list(gen) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 85 / 93

Generators (3/3)
Finally, we can iterate over generator objects too:

gen = (n for n in range(10))
for i in gen:
 print(i)

Above, we saw how to create a generator object using comprehension syntax but with
parentheses. We can also create a generator using functions and the yield keyword:

def gen():
 for n in range(10):
 yield (n, n ** 2)

g = gen()
next(g) # (0, 0)
next(g) # (1, 1)
next(g) # (2, 4)

86 / 93

Docstrings

87 / 93

Docstrings
Writing good functions brings up the idea of function documentation, called "docstrings". The
docstring goes right after the def line and is wrapped in triple quotes """ .

def make_palindrome(string):
 """Turns the string into a palindrome by concatenating itself with a reversed version of itself."""

 return string + string[::-1]

In Python we can use the help() function to view another function's documentation. In Jupyter,
we can use ? to view the documentation string of any function in our environment.

make_palindrome?

88 / 93

https://www.python.org/dev/peps/pep-0257/

Docstring: structure
General docstring convention in Python is described in PEP 257 - Docstring Conventions . There
are many different docstring style conventions used in Python. The exact style you use can be
important for helping you to render your documentation, or for helping your IDE parse your
documentation. Common styles include:

1. Single-line: If it's short, then just a single line describing the function will do (as above).

2. reST style: see here .

3. NumPy style: see here .

4. Google style: see here .

89 / 93

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0287/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html#example-google

Docstrings: the NumPy style
def function_name(param1, param2, param3):
 """First line is a short description of the function.

 A paragraph describing in a bit more detail what the
 function does and what algorithms it uses and common
 use cases.

 Parameters

 param1 : datatype
 A description of param1.
 param2 : datatype
 A description of param2.
 param3 : datatype
 A longer description because maybe this requires
 more explanation and we can use several lines.

 Returns

 datatype
 A description of the output, datatypes and behaviours.
 Describe special cases and anything the user needs to
 know to use the function.

 Examples

 >>> function_name(3,8,-5)
 2.0
 """

90 / 93

Docstrings: the NumPy style (example)
def make_palindrome(string):
 """Turns the string into a palindrome by concatenating
 itself with a reversed version of itself.

 Parameters

 string : str
 The string to turn into a palindrome.

 Returns

 str
 string concatenated with a reversed version of string

 Examples

 >>> make_palindrome('tom')
 'tommot'
 """
 return string + string[::-1]

91 / 93

Docstrings with optional arguments
def repeat_string(s, n = 2):
 """
 Repeat the string s, n times.

 Parameters

 s : str
 the string
 n : int, optional
 the number of times, by default = 2

 Returns

 str
 the repeated string

 Examples

 >>> repeat_string("Blah", 3)
 "BlahBlahBlah"
 """
 return s * n

92 / 93

 Object-oriented programming.
Classes, inheritance and polymorphism.
Modules and packages.

93 / 93

	Page 1
	Lecture 10
	Introduction to Python. Built-in data types. Variables, lists, tuples, dictionaries, sets. Control structures. Functions. Docstrings.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	26 Nov 2024

	Page 2
	Outline

	Page 3
	Introduction

	Page 4
	Why Python?

	Page 5
	Setting up a Python environment

	Page 6
	Structure of a basic Python program

	Page 7
	Hello, world!

	Page 8
	Definitions

	Page 9
	Built-in data types

	Page 10
	Python as a strongly, dynamically typed language

	Page 11
	Built-in data types (1/2)

	Page 12
	Built-in data types (2/2)

	Page 13
	Numeric, Boolean, strings

	Page 14
	Numeric data types

	Page 15
	Arithmetic operators

	Page 16
	Arithmetic operators: examples

	Page 17
	Boolean

	Page 18
	Boolean operators

	Page 19
	Strings
	Example

	Page 20
	String manipulation (1/2)

	Page 21
	String manipulation (2/2)

	Page 22
	String formatting

	Page 23
	Lists and tuples

	Page 24
	Lists and tuples
	Example

	Page 25
	List operations

	Page 26
	Tuple operations

	Page 27
	Indexing

	Page 28
	Slicing

	Page 29
	Sets and dictionaries

	Page 30
	Sets

	Page 31
	Dictionaries
	Example

	Page 32
	Casting

	Page 33
	Empties

	Page 34
	None

	Page 35
	Control structures

	Page 36
	Conditionals (1/2)

	Page 37
	Conditionals (2/2)

	Page 38
	Conditionals: nesting

	Page 39
	Inline if/else

	Page 40
	Truth value testing (1/2)

	Page 41
	Truth value testing (2/2)

	Page 42
	for loops (1/2)

	Page 43
	for loops (2/2)

	Page 44
	range (1/2)

	Page 45
	range (2/2)

	Page 46
	Nested for loops

	Page 47
	zip

	Page 48
	enumerate

	Page 49
	Looping over dictionaries

	Page 50
	while loops

	Page 51
	break

	Page 52
	continue

	Page 53
	Comprehensions

	Page 54
	Comprehensions

	Page 55
	Multiple comprehensions

	Page 56
	Set and dict comprehensions

	Page 57
	Exceptions

	Page 58
	Exceptions

	Page 59
	try-except

	Page 60
	A complete example

	Page 61
	More exception types

	Page 62
	Raise exceptions

	Page 63
	Functions

	Page 64
	Functions

	Page 65
	Local variables

	Page 66
	Mutable vs. immutable input arguments (1/2)

	Page 67
	Mutable vs. immutable input arguments (2/2)
	⚠️ Warning

	Page 68
	Side effects

	Page 69
	Null return type

	Page 70
	Default arguments (1 / 2)

	Page 71
	Default arguments (2 / 2)

	Page 72
	Type hints

	Page 73
	Multiple return values (1/2)

	Page 74
	Multiple return values (2/2)

	Page 75
	Unpacking (1/3)

	Page 76
	Unpacking (2/3)

	Page 77
	Unpacking (3/3)

	Page 78
	Functions with arbitrary number of arguments: *args

	Page 79
	Functions with arbitrary number of arguments: **kwargs

	Page 80
	Combining *args and **kwargs

	Page 81
	Example

	Page 82
	Functions as a data type

	Page 83
	Anonymous functions

	Page 84
	Generators (1/3)

	Page 85
	Generators (2/3)

	Page 86
	Generators (3/3)

	Page 87
	Docstrings

	Page 88
	Docstrings

	Page 89
	Docstring: structure

	Page 90
	Docstrings: the NumPy style

	Page 91
	Docstrings: the NumPy style (example)

	Page 92
	Docstrings with optional arguments

	Page 93
	➡️ Object-oriented programming. Classes, inheritance and polymorphism. Modules and packages.

