
Lecture 11

Object-oriented programming. Classes, inheritance and
polymorphism. Modules and packages.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

02 Dec 2024

1 / 63

Outline
1. OOP in Python

2. Decorators

3. Inheritance and polymorphism

4. Modules and packages

2 / 63

Object-oriented programming in Python

3 / 63

Object-oriented programming in Python
We've encountered built-in data types like dict and list . However, Python allows us to define
our own data types using classes. A class serves as a blueprint for creating objects, following the
principles of object-oriented programming .

d = dict()

In this example, d is an object, while dict is a type.

type(d)

dict

type(dict)

type

We refer to d as an instance of the type dict . 4 / 63

https://en.wikipedia.org/wiki/Object-oriented_programming

The need for custom classes
Custom classes become invaluable when we need to organize and manage complex data
structures efficiently. Let's illustrate this with an example involving the Advanced Programming
course (AdvProg) members. Initially, we store information in a dictionary:

advprog_1 = {'first': Pasquale', 'last': 'Africa', 'email': 'pafrica@sissa.it'}

To extract a member's full name, we define a function:

def full_name(first, last):
 return f"{first} {last}"

This approach requires repetitive code for each member:

advprog_2 = {'first': 'Giuseppe', 'last': 'D\'Inverno', 'email': gdinvern@sissa.it'}
full_name(advprog_2['first'], advprog_2['last'])

5 / 63

Creating a class for efficiency
To address the inefficiency, we can create a class as a blueprint for AdvProg members:

class AdvProgMember:
 pass

We enhance this blueprint by adding an __init__ method to initialize instances with specific
data:

class AdvProgMember:
 def __init__(self, first, last):
 self.first = first
 self.last = last
 self.email = first.lower() + "." + last.lower() + "@sissa.it"

6 / 63

The self
Class methods have only one specific difference from ordinary functions: they must have an extra
first name that has to be added to the beginning of the parameter list, but you do not give a value
for this parameter when you call the method, Python will provide it. This particular variable refers
to the object itself, and by convention, it is given the name self .

You must be wondering how Python gives the value for self and why you don't need to give a
value for it. An example will make this clear. Say you have a class called MyClass and an
instance of this class called myobject . When you call a method of this object as
myobject.method(arg1, arg2) , this is automatically converted by Python into
MyClass.method(myobject, arg1, arg2) - this is all the special self is about.

This also means that if you have a method which takes no arguments, then you still have to have
one argument, i.e. the self .

7 / 63

The __init__ method
There are many method names which have special significance in Python classes. We will see the
significance of the __init__ method now.

The __init__ method is run as soon as an object of a class is instantiated (i.e. created). The
method is useful to do any initialization (i.e. passing initial values to your object) you want to do
with your object. Notice the double underscores both at the beginning and at the end of the name.

We do not explicitly call the __init__ method, but it is automatically invoked when creating an
instance of a class:

advprog_1 = AdvProgMember('Pasquale', 'Africa')
print(advprog_1.first)
print(advprog_1.last)
print(advprog_1.email)

8 / 63

Methods
To simplify accessing a member's full name, we integrate it as a class method:

class AdvProgMember:
 def __init__(self, first, last):
 self.first = first
 self.last = last
 self.email = first.lower() + "." + last.lower() + "@sissa.it"

 def full_name(self): # Notice 'self' as an input argument.
 return f"{self.first} {self.last}"

advprog_1 = AdvProgMember('Pasquale', 'Africa')
print(advprog_1.full_name())

9 / 63

Class vs. object (or instance) attributes
Attributes can be instance-specific (advprog_1.first) or shared among all instances
(AdvProgMember.campus). Class attributes are defined outside the __init__ method.

class AdvProgMember:
 role = "Advanced Programming member"
 campus = "SISSA"

 def __init__(self, first, last, email):
 self.first = first
 self.last = last
 self.email = first.lower() + "." + last.lower() + "@sissa.it"

advprog_1 = AdvProgMember('Pasquale', 'Africa')
print(f"{advprog_1.first} is at campus {advprog_1.campus}.")
print(f"{advprog_1.first} is at campus {AdvProgMember.campus}.")

 Changing class attributes affects all instances!

10 / 63

Class methods
Besides regular methods, classes offer class methods and static methods. Class methods,
identified by @classmethod , act on the class itself, often serving as alternative constructors.

class AdvProgMember:
 @classmethod
 def from_csv(cls, csv_name):
 first, last = csv_name.split(',')
 return cls(first, last)

advprog_1 = AdvProgMember.from_csv('Pasquale,Africa')
advprog_1.full_name()

11 / 63

Static methods
Static methods, marked with @staticmethod , operate independently of instances and classes but
are relevant to the class.

class AdvProgMember:
 @staticmethod
 def is_exam_date(date):
 return True if date in ["Jan 17th", "Feb 13th"] else False

print(f"Is Dec 5th an exam date? {AdvProgMember.is_exam_date("Dec 5th")}")
print(f"Is Feb 13th an exam date? {AdvProgMember.is_exam_date("Feb 13th")}")

12 / 63

Magic methods (1/3)
In Python, magic methods, also known as dunder (double underscore) methods, are special
methods that start and end with double underscores. Magic methods are automatically invoked by
the Python interpreter in response to certain events or operations.

Example: __add__

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other_point):
 return Point(self.x + other_point.x, self.y + other_point.y)

point1 = Point(1, 2)
point2 = Point(3, 4)
result = point1 + point2

13 / 63

Magic methods (2/3)
Example: __eq__ and __call__

class CustomObject:
 def __init__(self, value):
 self.value = value

 def __eq__(self, other):
 return self.value == other.value

 def __call__(self, *args, **kwargs):
 return f"Called with args: {args}, kwargs: {kwargs}"

obj1 = CustomObject(42)
obj2 = CustomObject(42)
print(obj1 == obj2) # Output: True

result = obj1(1, 2, key="value")
print(result) # Output: Called with args=(1, 2), kwargs={'key': 'value'}

14 / 63

Magic methods (3/3)
Example: __getitem__ and __setitem__

class MyContainer:
 def __init__(self, data):
 self.data = data

 def __getitem__(self, index):
 return self.data[index]

 def __setitem__(self, index, value):
 self.data[index] = value

container = MyContainer([1, 2, 3, 4, 5])
print(container[2]) # Output: 3
container[2] = 10
print(container[2]) # Output: 10

15 / 63

Summary of common magic methods (1/5)
Object initialization and cleanup

__init__(self[, ...]) : Constructor method, initializes a new instance.

__del__(self) : Destructor method, called when the object is about to be destroyed.

Object representation

__str__(self) : Used by str() and print() to get a human-readable string
representation.

__repr__(self) : Used by repr() and the interactive interpreter for a developer-friendly
representation.

__format__(self, format_spec) : Customizes the formatting when using the format()
function.

16 / 63

Summary of common magic methods (2/5)
Attribute access

__getattr__(self, name) : Called when an attribute lookup fails.

__setattr__(self, name, value) : Called when an attribute is set.

__delattr__(self, name) : Called when an attribute is deleted.

Container and iteration

__len__(self) : Returns the length of the object; used by len() .

__getitem__(self, key) : Enables indexing and slicing; used by obj[key] .

__setitem__(self, key, value) : Enables index assignment obj[key] = value .

__delitem__(self, key) : Enables deletion of an index; used by del obj[key] .

__iter__(self) : Returns an iterator object; used by iter() .

__next__(self) : Retrieves the next item from the iterator; used by next() .
17 / 63

Summary of common magic methods (3/5)
Comparison

__eq__(self, other) : Defines equality; used by == .

__ne__(self, other) : Defines non-equality; used by != .

__lt__(self, other) : Defines less than; used by < .

__le__(self, other) : Defines less than or equal to; used by <= .

__gt__(self, other) : Defines greater than; used by > .

__ge__(self, other) : Defines greater than or equal to; used by >= .

__bool__(self) : Defines truthiness; used by bool() .

18 / 63

Summary of common magic methods (4/5)
Mathematical operations

__add__(self, other) : Defines addition; used by + .

__sub__(self, other) : Defines subtraction; used by - .

__mul__(self, other) : Defines multiplication; used by * .

__truediv__(self, other) : Defines true division; used by / .

__floordiv__(self, other) : Defines floor division; used by // .

__mod__(self, other) : Defines modulo; used by % .

__pow__(self, other[, modulo]) : Defines exponentiation; used by ** .

19 / 63

Summary of common magic methods (5/5)
Callable objects

__call__(self[, args[, kwargs]]) : Allows an instance to be called as a function.

Context management

__enter__(self)

__exit__(self, exc_type, exc_value, traceback)

Used for resource acquisition and release in a with statement:

with open("example.txt", "r") as file:
 content = file.read()
 print(content)
 # File is automatically closed outside the 'with' block.

20 / 63

Notes for C++ programmers

In Python, even integers are treated as objects (of the int class). This is unlike C++ where
integers are primitive native type.

The self in Python is equivalent to the this pointer in C++.

All class members (including the data members) are public and all the methods are virtual in
Python.

If you use data members with names using the double underscore prefix such as __myvar ,
Python uses name-mangling to effectively make it (almost) a private variable. Any identifier of
the form __myvar (at least two leading underscores or at most one trailing underscore) is
replaced with _MyClass__myvar , where MyClass is the current class name with a leading
underscore(s) stripped. After all, private members can still be accessed... You can check
using the built-in dir() function.

21 / 63

Decorators

22 / 63

Decorators
Decorators in Python offer a powerful way to enhance the functionality of functions or methods.
They act as wrappers, allowing you to extend or modify the behavior of the original function. Let's
delve deeper into decorators with examples and explore their practical applications.

Decorators can be imagined to be a shortcut to calling a wrapper function (i.e. a function that
"wraps" around another function so that it can do something before or after the inner function), so
applying the @classmethod decorator is the same as calling:

from_csv = classmethod(from_csv)

23 / 63

Defining decorators
Decorators are essentially functions that take another function as input, enhance its capabilities,
and return a modified version of the original function.

def my_decorator(original_func):
 def wrapper():
 print(f"A decoration before {original_func.__name__}.")
 result = original_func()
 print(f"A decoration after {original_func.__name__}.")
 return result
 return wrapper

my_decorator(original_func)()

Or, re-assigning the original symbol:
original_func = my_decorator(original_func)
original_func()

NB: __name__ is a special attribute that returns the name of a function, class or module as a
string. 24 / 63

Improved syntax using @
While the previous example works, Python provides a more readable syntax using the @ symbol.
The equivalent of the previous example using this syntax is:
This decorator, when applied to a function, surrounds the function call with additional actions. For
instance:

@my_decorator
def original_func():
 print("I'm the original function!")

original_func()

A decoration before original_func.
I'm the original function!
A decoration after original_func.

25 / 63

Practical example: timer decorator (1/2)
Now, let's create a more practical decorator that measures the execution time of a function. This
example utilizes the time module:

import time

def timer(my_function):
 def wrapper():
 t1 = time.time()
 result = my_function()
 t2 = time.time()
 print(f"{my_function.__name__} ran in {t2 - t1:.3f} sec")
 return result
 return wrapper

(More details about import wil follow).

26 / 63

Practical example: timer decorator (2/2)
Applying this decorator to a function allows us to measure its execution time:

@timer
def silly_function():
 for i in range(1e7):
 if (i % 1e6) == 0:
 print(i)

silly_function()

0
1000000
2000000
...
9000000
silly_function ran in 0.601 sec

27 / 63

Decorators and classes (1/2)
A decorator can be applied to classes as well:

def add_method(cls):
 def new_method(self):
 return f"Hello from the new method of {cls.__name__}!"

 cls.new_method = new_method

 return cls

@add_method
class MyClass:
 def existing_method(self):
 return "Hello from the existing method!"

obj = MyClass()
result_new = obj.new_method()

28 / 63

Decorators and classes (2/2)
... or be a class itself:

class CustomDecorator:
 def __init__(self, func):
 self.func = func

 def __call__(self, *args, **kwargs):
 print(f"Decorating function {self.func.__name__}")
 result = self.func(*args, **kwargs)
 print(f"Function {self.func.__name__} finished execution")
 return result

@CustomDecorator
def my_function():
 print("Executing my_function")

my_function()

29 / 63

Built-in decorators
Python comes with built-in decorators like classmethod and staticmethod , which are
implemented in C for efficiency. Although we won't dive into their implementation, they are widely
used in practice.

Other than logging and timing/profiling, decorators can be used to add validation checks for
input parameters and output cleanup to functions or methods, or to implement caching
mechanisms, where the result of a function is stored for a specific set of inputs, and subsequent
calls with the same inputs can return the cached result.

In conclusion, decorators provide a flexible and elegant way to enhance the behavior of functions
in Python. While creating custom decorators may not be a daily necessity, understanding them is
crucial for leveraging Python's full potential.

30 / 63

Inheritance and polymorphism

31 / 63

Inheritance and subclasses (1/4)
Inheritance in Python enables classes to inherit methods and attributes from other classes.
Previously, we worked with the AdvProgMember class, but now let's delve into creating more
specialized classes like AdvProgStudent and AdvProgInstructor .

class AdvProgMember:
 # ...

Now, to create an AdvProgStudent class inheriting from AdvProgMember :

class AdvProgStudent(AdvProgMember):
 pass

32 / 63

Inheritance and subclasses (2/4)
Creating instances of AdvProgStudent and accessing inherited methods:

student_1 = AdvProgStudent('Craig', 'Smith')
student_2 = AdvProgStudent('Megan', 'Scott')
print(student_1.full_name())
print(student_2.full_name())

Here, AdvProgStudent inherits methods like full_name() from AdvProgMember .

To fine-tune the AdvProgStudent class, we adjust attributes:

class AdvProgStudent(AdvProgMember):
 role = "AdvProg student"

33 / 63

Inheritance and subclasses (3/4)
Now, creating a student instance reflects the updated role:

student_1 = AdvProgStudent('John', 'Smith')
print(student_1.role)

Adding an instance attribute like grade using super() , or the base class name:

class AdvProgStudent(AdvProgMember):
 role = "AdvProg student"

 def __init__(self, first, last, grade):
 # super().__init__(first, last) # Or the following:
 AdvProgMember.__init__(self, first, last)
 self.grade = grade

student_1 = AdvProgStudent('John', 'Smith', 28)

34 / 63

Inheritance and subclasses (4/4)
Creating another subclass, AdvProgInstructor , with additional methods:

class AdvProgInstructor(AdvProgMember):
 role = "AdvProg instructor"

 def __init__(self, first, last, students=None):
 super().__init__(first, last)
 self.students = ([] if students is None else students)

 def add_student(self, student):
 self.students.append(student)

 def remove_student(self, student):
 self.students.remove(student)

instructor_1 = AdvProgInstructor('Pasquale', 'Africa')
instructor_1.add_student(student1)
instructor_1.add_student(student2)
instructor_1.remove_student(student1)

35 / 63

How inheritance works
To use inheritance, we specify the base class names in a tuple following the class name in the
class definition (for example, class Teacher(SchoolMember)).

Next, we observe that the __init__ method of the base class is explicitly called using the self
variable so that we can initialize the base class part of an instance in the subclass. This is very
important to remember.

Since we are defining a __init__ method in AdvProgStudent and AdvProgInstructor
subclasses, Python does not automatically call the constructor of the base class AdvProgMember ,
you have to explicitly call it yourself.

In contrast, if we have not defined an __init__ method in a subclass, Python will call the
constructor of the base class automatically.

36 / 63

Getters, setters, deleters
For effective class management, Python provides getters, setters, and deleters. Consider the
former AdvProgInstructor class:

class AdvProgInstructor(AdvProgMember):
 role = "AdvProg instructor"

 # ...

Instances of AdvProgMember can be created and accessed:

advprog_1 = AdvProgMember('Pasqulae', 'Africa') # Typo!
 ^^^^^^^^
print(advprog_1.first)
print(advprog_1.last)
print(advprog_1.email)
print(advprog_1.full_name())

37 / 63

Getters: the @property decorator (1/2)
Imagine that I mis-spelled the name of the first name and wanted to correct it. Watch what
happens.

advprog_1.first = 'Pasquale'
print(advprog_1.first)
print(advprog_1.last)
print(advprog_1.email) # Still prints pasqulae.africa@sissa.it!
print(advprog_1.full_name())

Utilizing a @property decorator defines email like a method, but keeps it as an attribute:

class AdvProgMember:
 # ...

 @property
 def email(self):
 return self.first.lower() + "." + self.last.lower() + "@sissa.it"

38 / 63

Getters: the @property decorator (2/2)
Now, changes to the first name reflect in the email :

advprog_1 = AdvProgMember('Pasqulae', 'Africa')
advprog_1.first = 'Pasquale'
print(advprog_1.first)
print(advprog_1.last)
print(advprog_1.email) # Now the correct value is printed.
print(advprog_1.full_name())

We could do the same with the full_name() method:

class AdvProgMember:
 # ...

 @property
 def full_name(self):
 return f"{self.first} {self.last}"

39 / 63

Setter methods (1/2)
Introducing a full_name setter to update first and last :

But what happens if we instead want to make a change to the full name now?

advprog_1.full_name = 'Pasquale Africa'

AttributeError: can't set attribute

We get an error: class instance doesn't know what to do with the value it was passed. Ideally, we'd
like our class instance to use this full name information to update self.first and self.last .

40 / 63

Setter methods (2/2)
To handle this action, we need a setter , defined using the decorator @<attribute>.setter :

class AdvProgMember:
 # ...

 @full_name.setter
 def full_name(self, name):
 first, last = name.split(' ')
 self.first = first
 self.last = last

Setting the full_name now updates the attributes:

advprog_1 = AdvProgMember('X', 'Y')
advprog_1.full_name = 'Pasquale Africa'

41 / 63

Deleters
We've talked about getting information and setting information, but what about deleting
information? This is typically used to do some clean up and is defined with the
@<attribute>.deleter decorator.

class AdvProgMember:
 # ...

 @full_name.deleter
 def full_name(self):
 print('Name deleted!')
 self.first = None
 self.last = None

Deleting the full_name attribute results in a cleanup:

advprog_1 = AdvProgMember('Pasquale', 'Africa')
delattr(advprog_1, "full_name")

42 / 63

Modules and packages

43 / 63

Modules

44 / 63

Modules: reusable code in Python
In Python, the ability to reuse code is facilitated by modules. A module is a file with a .py
extension that contains functions and variables. There are various methods to write modules,
including using languages like C to create compiled modules.

When importing a module, to enhance import performance, Python creates byte-compiled files
(__pycache__/filename.pyc). These files, platform-independent and located in the same
directory as the corresponding .py files, speed up subsequent imports by storing preprocessed
code.

45 / 63

Using Standard Library Modules
You can import modules in your program to leverage their functionality. For instance, consider the
sys module in the Python standard library. Below is an example:

Example: module_using_sys.py
import sys

print("Command line arguments:", sys.argv)

When executed, this program prints the command line arguments provided to it. The sys.argv
variable holds these arguments as a list. For instance, running python module_using_sys.py we
are arguments results in sys.argv[0] being 'module_using_sys.py' , sys.argv[1] being
'we' , sys.argv[2] being 'are' , and sys.argv[3] being 'arguments' .

46 / 63

The from... import... Statement
You can selectively import variables from a module using the from... import... statement.
However, it's generally advised to use the import statement to avoid potential name clashes and
enhance readability.

from math import sqrt
print("Square root of 16 is", sqrt(16))

A special case is from math import * , where all symbols exported by the math module are
imported.

47 / 63

A module's __name__
Every module has a __name__ attribute that indicates whether the module is being run
standalone or imported. If __name__ is '__main__' , the module is being run independently.

Example: module_using_name.py
if __name__ == '__main__':
 print("This module is being run independently.")

48 / 63

Creating your own modules
Creating modules is straightforward: every Python program is a module!
Save it with a .py extension. For example:

Example: mymodule.py
def say_hi():
 print("Hello, this is mymodule speaking.")

__version__ = '1.0'

Now, you can use this module in another program:

Example: mymodule_demo.py
import mymodule

mymodule.say_hi()
print("Version:", mymodule.__version__)

49 / 63

The dir function
The built-in dir() function lists all symbols defined in an object. For a module, it includes
functions, classes, and variables. It can also be used without arguments to list names in the
current module.

Example: Using the dir function.
import sys

Names in sys module.
print("Attributes in sys module:", dir(sys))

Names in the current module.
print("Attributes in current module:", dir())

50 / 63

Packages

51 / 63

Packages: organizing modules hierarchically
Packages are folders of modules with a special __init__.py file, indicating that the folder
contains Python modules. They provide a hierarchical organization for modules.

<some folder in sys.path>/
└── datascience/
 ├── __init__.py
 ├── preprocessing/
 │ ├── __init__.py
 │ ├── cleaning.py
 │ └── scaling.py
 └── analysis/
 ├── __init__.py
 ├── statistics.py
 └── visualization.py

52 / 63

The __init__.py files (1/5)
The __init__.py file in a Python package serves multiple purposes. It's executed when the
package or module is imported, and it can contain initialization code, set package-level variables,
or define what should be accessible when the package is imported using from package import
* .

Here are some common examples of using __init__.py files.

53 / 63

The __init__.py files (2/5)

1. Initialization code

__init__.py in a package.

Initialization code to be executed when the package is imported.
print("Initializing my_package...")

Define package-level variables.
package_variable = 42

Import specific modules when the package is imported.
from . import module1
from . import module2

In this example, the __init__.py file initializes the package, sets a package-level variable
(package_variable), and imports specific modules from the package.

54 / 63

The __init__.py files (3/5)

2. Controlling from package import *

__init__.py in a package.

Define what should be accessible when a user writes 'from package import *'.
__all__ = ['module1', 'module2']

Import modules within the package.
from . import module1
from . import module2

By specifying __all__ , you explicitly control what is imported when using from package
import * . It's considered good practice to avoid using * imports, but if you need to, this can help
manage what gets imported.

The . symbol means that module1.py and module2.py are to be located in the same folder as
the __init.py__ file.

55 / 63

The __init__.py files (4/5)

3. Lazy loading

__init__.py in a package.

Initialization code.
print("Initializing my_lazy_package...")

Import modules only when they are explicitly used.
def lazy_function():
 from . import lazy_module
 lazy_module.do_something()

In this example, the module is initialized only when the lazy_function is called. This can be
useful for performance optimization, especially if some modules are rarely used.

56 / 63

The __init__.py files (5/5)

4. Setting package-level configuration

__init__.py in a package.

Configuration settings for the package.
config_setting1 = 'value1'
config_setting2 = 'value2'

You can use the __init__.py file to set package-level configuration settings that can be
accessed by modules within the package.

57 / 63

Python modules as scripts vs. pre-compiled libraries
(1/2)
In Python, modules and packages can be implemented either as Python scripts or as pre-
compiled dynamic libraries. Let's explore both concepts:

1. Python modules as scripts:

Extension: Modules implemented as scripts usually have a .py extension.

Interpretation: The Python interpreter reads and executes the script line by line.

Readability: Scripts are human-readable and editable using a text editor.

Flexibility: This is the most common form of Python modules. You can write and modify
the code easily.

Portability: Python scripts can be easily shared and run on any system with a
compatible Python interpreter.

58 / 63

Python modules as scripts vs. pre-compiled libraries
(2/2)

2. Python modules as dynamic libraries:

Compilation: Modules can be pre-compiled into shared libraries for performance.

Execution: The compiled code is loaded into memory and executed by Python.

Protection of intellectual property: Pre-compiled modules can be used to distribute
proprietary code without exposing the source.

Performance: Pre-compiled modules may offer better performance as they are already
in machine code.

It's essential to note that Python itself is an interpreted language, and even when using pre-
compiled modules, the Python interpreter is still involved in executing the code. The use of pre-
compiled modules is more about optimizing performance and protecting source code than altering
the fundamental nature of Python as an interpreted language. 59 / 63

The Python Standard Library
Python’s standard library is very extensive, offering a wide range of facilities as indicated by the

long table of contents listed on the website. The library contains built-in modules (written in C) that
provide access to system functionality such as file I/O that would otherwise be inaccessible to
Python programmers, as well as modules written in Python that provide standardized solutions for
many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away
platform-specifics into platform-neutral APIs.

In addition to the standard library, there is an active collection of hundreds of thousands of
components (from individual programs and modules to packages and entire application
development frameworks), available from the Python Package Index .

60 / 63

https://docs.python.org/3.12/library/index.html
https://pypi.org/

Summary
Packages are a convenient way to organize modules hierarchically, often seen in the Python
standard library.

In summary, modules and packages enhance code reusability in Python. The standard library
showcases the power of these concepts, and creating your own modules and packages can
significantly improve code organization and maintainability.

61 / 63

Zen of Python:
"Explicit is better than implicit."
Run import this in Python to learn more.

62 / 63

 Integrating C++ and Python codes.

63 / 63

	Page 1
	Lecture 11
	Object-oriented programming. Classes, inheritance and polymorphism. Modules and packages.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	02 Dec 2024

	Page 2
	Outline

	Page 3
	Object-oriented programming in Python

	Page 4
	Object-oriented programming in Python

	Page 5
	The need for custom classes

	Page 6
	Creating a class for efficiency

	Page 7
	The self

	Page 8
	The __init__ method

	Page 9
	Methods

	Page 10
	Class vs. object (or instance) attributes
	⚠️ Changing class attributes affects all instances!

	Page 11
	Class methods

	Page 12
	Static methods

	Page 13
	Magic methods (1/3)
	Example: __add__

	Page 14
	Magic methods (2/3)
	Example: __eq__ and __call__

	Page 15
	Magic methods (3/3)
	Example: __getitem__ and __setitem__

	Page 16
	Summary of common magic methods (1/5)
	Object initialization and cleanup
	Object representation

	Page 17
	Summary of common magic methods (2/5)
	Attribute access
	Container and iteration

	Page 18
	Summary of common magic methods (3/5)
	Comparison

	Page 19
	Summary of common magic methods (4/5)
	Mathematical operations

	Page 20
	Summary of common magic methods (5/5)
	Callable objects
	Context management

	Page 21
	Notes for C++ programmers

	Page 22
	Decorators

	Page 23
	Decorators

	Page 24
	Defining decorators

	Page 25
	Improved syntax using @

	Page 26
	Practical example: timer decorator (1/2)

	Page 27
	Practical example: timer decorator (2/2)

	Page 28
	Decorators and classes (1/2)

	Page 29
	Decorators and classes (2/2)

	Page 30
	Built-in decorators

	Page 31
	Inheritance and polymorphism

	Page 32
	Inheritance and subclasses (1/4)

	Page 33
	Inheritance and subclasses (2/4)

	Page 34
	Inheritance and subclasses (3/4)

	Page 35
	Inheritance and subclasses (4/4)

	Page 36
	How inheritance works

	Page 37
	Getters, setters, deleters

	Page 38
	Getters: the @property decorator (1/2)

	Page 39
	Getters: the @property decorator (2/2)

	Page 40
	Setter methods (1/2)

	Page 41
	Setter methods (2/2)

	Page 42
	Deleters

	Page 43
	Modules and packages

	Page 44
	Modules

	Page 45
	Modules: reusable code in Python

	Page 46
	Using Standard Library Modules

	Page 47
	The from... import... Statement

	Page 48
	A module's __name__

	Page 49
	Creating your own modules

	Page 50
	The dir function

	Page 51
	Packages

	Page 52
	Packages: organizing modules hierarchically

	Page 53
	The __init__.py files (1/5)

	Page 54
	The __init__.py files (2/5)
	1. Initialization code

	Page 55
	The __init__.py files (3/5)
	2. Controlling from package import *

	Page 56
	The __init__.py files (4/5)
	3. Lazy loading

	Page 57
	The __init__.py files (5/5)
	4. Setting package-level configuration

	Page 58
	Python modules as scripts vs. pre-compiled libraries (1/2)

	Page 59
	Python modules as scripts vs. pre-compiled libraries (2/2)

	Page 60
	The Python Standard Library

	Page 61
	Summary

	Page 62
	Zen of Python: "Explicit is better than implicit." Run import this in Python to learn more.

	Page 63
	➡️ Integrating C++ and Python codes.

