
Lecture 12

Integrating C++ and Python codes.

Advanced Programming - SISSA, UniTS, 2024-2025

Pasquale Claudio Africa

09 Dec 2024

1 / 66

Outline

1. Integrating C++ and Python

2. pybind11

Installation

Basics

Binding object-oriented code

3. How to build and import pybind11 modules

4. Examples

Part of these lecture notes and examples is re-adapted from the official pybind11 documentation
(license) and from this repository (license).

2 / 66

https://github.com/pybind/pybind11/tree/master/docs
file:///home/runner/work/advanced_programming_2024-2025/advanced_programming_2024-2025/lectures/12/LICENSE_pybind11.md
https://github.com/tdegeus/pybind11_examples
file:///home/runner/work/advanced_programming_2024-2025/advanced_programming_2024-2025/lectures/12/LICENSE_pybind11_examples.md

Integrating C++ and Python

3 / 66

Why integrating C++ and Python code
C++ and Python are powerful in their own right, but they excel in different areas. C++ is renowned
for its performance and control over system resources, making it ideal for CPU-intensive tasks and
systems programming. Python, on the other hand, is celebrated for its simplicity, readability, and
vast ecosystem of libraries, especially in data science, machine learning, and web development.

In research areas like machine learning, scientific computing, and data analysis, the need for
processing speed and efficient resource management is critical.

The industry often requires solutions that are both efficient and rapidly developed.

By integrating C++ with Python, you can create applications that harness the raw power of C++
and the versatility and ease-of-use of Python. Python, despite its popularity in these fields, often
falls short in terms of performance. Knowledge of how to integrate C++ and Python equips with a
highly valuable skill set.

4 / 66

Common libraries for C++ and Python integration (1/5)
Integrating C++ and Python code is a common need in software development, especially when
you want to combine the high performance of C++ with the ease of use of Python. Several
libraries are available for this purpose, each with its own set of advantages and drawbacks. Here
are some of the most commonly used libraries:

1. Boost.Python
Pros:

Well-documented, widely used.

Seamless interoperability between C++ and Python.

Exposes C++ classes to Python and vice versa.

Cons:
Complex setup for beginners.

Larger binary size.

Slower compile times. 5 / 66

https://www.boost.org/doc/libs/1_84_0/libs/python/doc/html/index.html

Common libraries for C++ and Python integration (2/5)
2. SWIG (Simplified Wrapper and Interface Generator)

Pros:
Generates bindings for multiple languages.

Relatively easy for simple tasks.

Useful for multi-language projects.

Cons:
Less efficient, less "pythonic" interface code.

Difficult to debug.

Complex for advanced use cases.

6 / 66

https://www.swig.org/

Common libraries for C++ and Python integration (3/5)
3. pybind11

Pros:
Modern, lightweight, easy to use.

Header-only library.

More pythonic bindings.

Good documentation, community support.

Cons:
Less advanced features than Boost.Python.

More manual work for complex bindings.

7 / 66

https://pybind11.readthedocs.io/

Common libraries for C++ and Python integration (4/5)
4. Cython

Pros:
C extensions in Python-like syntax.

Significant performance improvements.

Good integration with Python ecosystem.

Cons:
Requires learning new syntax.

Not for exposing existing C++ codebases.

Variable performance gains.

8 / 66

https://cython.org/

Common libraries for C++ and Python integration (5/5)
5. ctypes

Pros:
Part of Python standard library.

Simple for basic tasks.

Good for calling C functions from Python.

Cons:
Limited to C functions, not C++.

Manual type conversions.

Complex error handling.

9 / 66

https://docs.python.org/3/library/ctypes.html

Why pybind11?
Modern, relevant, and practical for industry demands.

Header-only library, which simplifies the build process.

Lightweight, and easy to use.

Balances ease of use with powerful features.

Generates more pythonic bindings compared to SWIG.

Suitable for a range of projects, enhancing problem-solving skills.

 Note: pybind11 may require more manual work for complex bindings.

10 / 66

PyPy and Numba overview
PyPy

Alternative Python implementation focusing on speed.

JIT Compiler for runtime compilation.

Less memory usage, compatible with CPython.

Faster for long-running processes.

Limitations: Library support, JIT warm-up time.

Numba
JIT compiler for Python and NumPy code.

Easy to use, significant performance improvements.

Integrates with Python scientific stack.

Supports CUDA GPU programming.

Limitations: Focused on numerical computing, learning curve for parallel programming,
debugging challenges.

11 / 66

https://www.pypy.org/
https://numba.pydata.org/

pybind11: installation

12 / 66

pybind11 overview
pybind11 is a lightweight, header-only library that connects C++ types with Python. This tool is
crucial for creating Python bindings of existing C++ code. Its design and functionality are similar to
the Boost.Python library but with a focus on simplicity and minimalism. pybind11 stands out for its
ability to avoid the complexities associated with Boost by leveraging C++11 features.

Documentation link

13 / 66

https://pybind11.readthedocs.io/en/stable/index.html

How to install (1/3)
There are multiple methods to acquire the pybind11 source, available on GitHub . The
recommended approaches include via PyPI, through Conda, building from source, or importing it
as a Git submodule.

Include with PyPI
pybind11 can be installed as a Python package from PyPI using pip:

pip install pybind11

Include with conda-forge
Conda users can obtain pybind11 via conda-forge:

conda install -c conda-forge pybind11

14 / 66

https://github.com/pybind/pybind11

How to install (2/3)

Global install with brew
For macOS and Linux users, the brew package manager offers pybind11. Install it using:

brew install pybind11

Build from source
If you prefer to build from source, use the following commands:

wget https://github.com/pybind/pybind11/archive/refs/tags/v2.11.1.tar.gz
tar xzvf v2.11.1.tar.gz

cd pybind11-2.11.1/
mkdir build && cd build

cmake .. -DCMAKE_INSTALL_PREFIX=/opt/pybind11
[sudo] make -j<N> install 15 / 66

How to install (4/4)

Include as a submodule
For Git-based projects, pybind11 can be incorporated as a submodule. In your Git repository,
execute the following commands:

git submodule add -b stable https://github.com/pybind/pybind11 extern/pybind11
git submodule update --init

This method assumes dependency placement in extern/ . Remember, some servers might
require the .git extension.

After setup, include extern/pybind11/include in your project, or employ pybind11's integration
tools.

16 / 66

pybind11: basics

17 / 66

Header and namespace conventions
For brevity, all code examples assume that the following two lines are present:

#include <pybind11/pybind11.h>
namespace py = pybind11;

Some features may require additional headers, but those will be specified as needed.

18 / 66

Creating bindings for a simple function
Let's start by creating Python bindings for an extremely simple function, which adds two numbers
and returns their result. For simplicity, we'll put both this function and the binding code into a file
named example.cpp with the following contents:

int add(int i, int j) {
 return i + j;
}

PYBIND11_MODULE(example, m) {
 m.doc() = "pybind11 example plugin"; // Optional module docstring.

 m.def("add", &add, "A function that adds two numbers");
}

In practice, implementation and binding code will generally be located in separate files.

19 / 66

The PYBIND11_MODULE macro
The PYBIND11_MODULE macro creates a function that will be called when an import statement is
issued from within Python. The module name (example) is given as the first macro argument (it
should not be in quotes). The second argument (m) defines a variable of type py::module_
<module> which is the main interface for creating bindings. The method module_::def generates
binding code that exposes the add() function to Python.

20 / 66

Note (1/2)
Notice how little code was needed to expose our function to Python: all details regarding the
function's parameters and return value were automatically inferred using template
metaprogramming. This overall approach and the used syntax are borrowed from Boost.Python,
though the underlying implementation is very different.

pybind11 is a header-only library, hence it is not necessary to link against any special libraries and
there are no intermediate (magic) translation steps. On Linux, the above example can be compiled
using the following command:

g++ -O3 -Wall -shared -std=c++11 -fPIC \
 $(python3 -m pybind11 --includes) \
 example.cpp -o example$(python3-config --extension-suffix)

If you included pybind11 as a Git submodule, then use $(python3-config --includes) -
Iextern/pybind11/include instead of $(python3 -m pybind11 --includes) in the above
compilation. 21 / 66

Note (2/2)
The python3 -m pybind11 --includes command fetches the include paths for both pybind11
and Python headers. This assumes that pybind11 has been installed using pip or conda . If it
hasn't, you can also manually specify -I <path-to-pybind11>/include together with the Python
includes path python3-config --includes .

On macOS: the build command is almost the same but it also requires passing the -undefined
dynamic_lookup flag so as to ignore missing symbols when building the module.

22 / 66

How to import a C++ bound module
Building the above C++ code will produce a binary module file that can be imported to Python.
Assuming that the compiled module is located in the current directory, the following interactive
Python session shows how to load and execute the example:

import example
example.add(1, 2) # Output: 3

23 / 66

Keyword arguments
With a simple code modification, it is possible to inform Python about the names of the arguments
("i" and "j" in this case).

m.def("add", &add, "A function which adds two numbers",
 py::arg("i"), py::arg("j"));

arg is one of several special tag classes which can be used to pass metadata into
module_::def . With this modified binding code, we can now call the function using keyword

arguments, which is a more readable alternative particularly for functions taking many parameters:

import example
example.add(i=1, j=2) # Output: 3L

24 / 66

Documentation
The keyword names also appear in the function signatures within the documentation.

help(example)

...
FUNCTIONS
 add(...)
 Signature : (i: int, j: int) -> int

 A function which adds two numbers

25 / 66

Shorthand for keyword arguments
A shorter notation for named arguments is also available:

// Regular notation.
m.def("add1", &add, py::arg("i"), py::arg("j"));

// Shorthand.
using namespace py::literals;
m.def("add2", &add, "i"_a, "j"_a);

The _a suffix forms a C++11 literal which is equivalent to arg . Note that the literal operator must
first be made visible with the directive using namespace py::literals . This does not bring in
anything else from the pybind11 namespace except for literals.

26 / 66

Default arguments
Suppose now that the function to be bound has default arguments, e.g.:

int add(int i = 1, int j = 2) {
 return i + j;
}

Unfortunately, pybind11 cannot automatically extract these parameters, since they are not part of
the function's type information. However, they are simple to specify using an extension of arg :

// Regular notation.
m.def("add", &add, "A function which adds two numbers", py::arg("i") = 1, py::arg("j") = 2);

// Shorthand.
m.def("add2", &add, "i"_a=1, "j"_a=2);

The default values also appear within the documentation.

27 / 66

Exporting variables
To expose a value from C++, use the attr function to register it in a module as shown below.
Built-in types and general objects (more on that later) are automatically converted when assigned
as attributes, and can be explicitly converted using the function py::cast .

PYBIND11_MODULE(example, m) {
 m.attr("the_answer") = 42;
 py::object world = py::cast("World");
 m.attr("what") = world;
}

These are then accessible from Python:

import example
example.the_answer # Output: 42
example.what # Output: 'World'

28 / 66

Supported data types
A large number of data types are supported out of the box and can be used seamlessly as
functions arguments, return values or with py::cast in general.

For a full overview, see the official documentation .

29 / 66

https://pybind11.readthedocs.io/en/stable/advanced/cast/index.html

pybind11: binding object-oriented code

30 / 66

Creating bindings for a custom type
Let's now look at a more complex example where we'll create bindings for a custom C++ data
structure named Pet .

struct Pet {
 Pet(const std::string &name) : name(name) { }
 void set_name(const std::string &name_) { name = name_; }
 const std::string &get_name() const { return name; }

 std::string name;
};

PYBIND11_MODULE(example, m) {
 py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def("set_name", &Pet::set_name)
 .def("get_name", &Pet::get_name);
}

31 / 66

class_
class_ creates bindings for a C++ class or struct-style data structure. init is a convenience

function that takes the types of a constructor's parameters as template arguments and wraps the
corresponding constructor. An interactive Python session demonstrating this example is shown
below:

import example
p = example.Pet("Molly")
print(p) # Output: <example.Pet object at 0x10cd98060>
p.get_name() # Output: 'Molly'
p.set_name("Charly")
p.get_name() # Output: 'Charly'

Note: Static member functions can be bound in the same way using class_::def_static .
Note: It is possible to specify keyword and default arguments using the syntax discussed in the
previous section.

32 / 66

Binding lambda functions (1/2)
Note how print(p) produced a rather useless summary of our data structure in the example
above:

print(p) # Output: <example.Pet object at 0x10cd98060>

To address this, we could bind a utility function that returns a human-readable summary to the
special method slot named __repr__ . Unfortunately, there is no suitable functionality in the Pet
data structure, and it would be nice if we did not have to change it.

33 / 66

Binding lambda functions (2/2)
This can easily be accomplished by binding a lambda function instead:

py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def("set_name", &Pet::set_name)
 .def("get_name", &Pet::get_name)
 .def("__repr__",
 [](const Pet &a) {
 return "<example.Pet named '" + a.name + "'>";
 }
);

With the above change, the same Python code now produces the following output:

print(p) # Output: <example.Pet named 'Molly'>

34 / 66

Instance and static fields
We can also directly expose the name field using the class_::def_readwrite method. A similar
class_::def_readonly method also exists for const fields.

py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name)
 // ...

This makes it possible to write

p = example.Pet("Molly")
p.name # Output: 'Molly'
p.name = "Charly"
p.name # Output: 'Charly'

35 / 66

Private fields (1/2)
Now suppose that Pet::name was a private internal variable that can only be accessed via
setters and getters.

class Pet {
public:
 Pet(const std::string &name) : name(name) { }
 void set_name(const std::string &name_) { name = name_; }
 const std::string &get_name() const { return name; }

private:
 std::string name;
};

36 / 66

Private fields (2/2)
In this case, the method class_::def_property (class_::def_property_readonly for read-
only data) can be used to provide a field-like interface within Python that will transparently call the
setter and getter functions:

py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def_property("name", &Pet::get_name, &Pet::set_name)
 // ...

Write only properties can be defined by passing nullptr as the input for the read function.

Note: Similar functions class_::def_readwrite_static , class_::def_readonly_static
class_::def_property_static , and class_::def_property_readonly_static are provided for

binding static variables and properties.

37 / 66

Dynamic attributes (1/3)
Native Python classes can pick up new attributes dynamically:

class Pet:
 name = "Molly"

p = Pet()
p.name = "Charly" # Overwrite existing.
p.age = 2 # Dynamically add a new attribute.

38 / 66

Dynamic attributes (2/3)
By default, classes exported from C++ do not support this and the only writable
attributes are the ones explicitly defined using class_::def_readwrite
or class_::def_property .

py::class_<Pet>(m, "Pet")
 .def(py::init<>())
 .def_readwrite("name", &Pet::name);

Trying to set any other attribute results in an error:

p = example.Pet()
p.name = "Charly" # Ok: attribute defined in C++.
p.age = 2

AttributeError: 'Pet' object has no attribute 'age'

39 / 66

Dynamic attributes (3/3)
The py::dynamic_attr tag enables dynamic attributes for C++ classes:

py::class_<Pet>(m, "Pet", py::dynamic_attr())
 .def(py::init<>())
 .def_readwrite("name", &Pet::name);

Now everything works as expected:

p = example.Pet()
p.name = "Charly" # Ok: overwrite value in C++.
p.age = 2 # Ok: dynamically add a new attribute.
p.__dict__ # Output: {'age': 2}

Note that there is a small runtime cost for a class with dynamic attributes. Not only because of the
addition of a __dict__ , but also because of more expensive garbage collection tracking which
must be activated to resolve possible circular references. Native Python classes incur this same
cost by default. 40 / 66

Inheritance, downcasting and polymorphism (1/6)
Suppose now that the example consists of two data structures with an inheritance relationship:

struct Pet {
 Pet(const std::string &name) : name(name) { }
 std::string name;
};

struct Dog : Pet {
 Dog(const std::string &name) : Pet(name) { }
 std::string bark() const { return "woof!"; }
};

41 / 66

Inheritance, downcasting and polymorphism (2/6)
There are two different ways of indicating a hierarchical relationship to pybind11: the first specifies
the C++ base class as an extra template parameter of the class_ :

py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name);

// Method 1: template parameter:.
py::class_<Dog, Pet /* C++ parent type. */>(m, "Dog")
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);

42 / 66

Inheritance, downcasting and polymorphism (3/6)
Alternatively, we can also assign a name to the previously bound Pet
class_ object and reference it when binding the Dog class:

py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
 .def_readwrite("name", &Pet::name);

// Method 2: pass parent class_ object.
py::class_<Dog>(m, "Dog", pet /* <- Specify Python parent instance. */)
 .def(py::init<const std::string &>())
 .def("bark", &Dog::bark);

43 / 66

Inheritance, downcasting and polymorphism (4/6)
Functionality-wise, both approaches are equivalent.

p = example.Dog("Molly")
p.name # Output: 'Molly'
p.bark() # Output: 'woof!'

The C++ classes defined above are regular non-polymorphic types with an inheritance
relationship. This is reflected in Python:

// Return a base pointer to a derived instance.
m.def("pet_store", [](){ return std::unique_ptr<Pet>(new Dog("Molly")); });

p = example.pet_store()
type(p) # Output: Pet
No pointer downcasting for regular non-polymorphic types.
p.bark() # Output: AttributeError: 'Pet' object has no attribute 'bark'

44 / 66

Inheritance, downcasting and polymorphism (5/6)
The function returned a Dog instance, but because it's a non-polymorphic type behind a base
pointer, Python only sees a Pet . In C++, a type is only considered polymorphic if it has at least
one virtual function and pybind11 will automatically recognize this:

struct PolymorphicPet {
 virtual ~PolymorphicPet() = default;
};

struct PolymorphicDog : PolymorphicPet {
 std::string bark() const { return "woof!"; }
};

py::class_<PolymorphicPet>(m, "PolymorphicPet");
py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
 .def(py::init<>())
 .def("bark", &PolymorphicDog::bark);

// Again, return a base pointer to a derived instance.
m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });

45 / 66

Inheritance, downcasting and polymorphism (6/6)
p = example.pet_store2()
type(p) # Output: PolymorphicDog
p.bark() # Output: 'woof!'

Given a pointer to a polymorphic base, pybind11 performs automatic downcasting to the actual
derived type. Note that this goes beyond the usual situation in C++: we don't just get access to the
virtual functions of the base, we get the concrete derived type including functions and attributes
that the base type may not even be aware of.

46 / 66

Overloaded methods (1/2)
Sometimes there are several overloaded C++ methods with the same name taking different kinds
of input arguments:

struct Pet {
 Pet(const std::string &name, int age) : name(name), age(age) { }

 void set(int age_) { age = age_; }
 void set(const std::string &name_) { name = name_; }

 std::string name;
 int age;
};

Attempting to bind Pet::set will cause an error since the compiler does not know which method
the user intended to select.

47 / 66

Overloaded methods (2/2)
We can disambiguate by casting them to function pointers. Binding multiple functions to the same
Python name automatically creates a chain of function overloads that will be tried in sequence.

py::class_<Pet>(m, "Pet")
 .def(py::init<const std::string &, int>())
 .def("set", static_cast<void (Pet::*)(int)>(&Pet::set), "Set the pet's age")
 .def("set", static_cast<void (Pet::*)(const std::string &)>(&Pet::set), "Set the pet's name");

The overload signatures are also visible in the method's docstring. If you have a C++14
compatible compiler, you can use an alternative syntax to cast the overloaded function:

py::class_<Pet>(m, "Pet")
 .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
 .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");

Here, py::overload_cast only requires the parameter types to be specified. The return type and
class are deduced.

48 / 66

Overloaded const methods
If a function is overloaded based on constness, the py::const_ tag should be used:

struct Widget {
 int foo(int x, float y);
 int foo(int x, float y) const;
};

py::class_<Widget>(m, "Widget")
 .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
 .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));

Note: this approach also works for multiple overloaded constructors.

49 / 66

Enumerations and internal types (1/2)
Let's now suppose that the example class contains internal types like enumerations, e.g.:

struct Pet {
 enum Kind {
 Dog = 0,
 Cat
 };

 struct Attributes {
 float age = 0;
 };

 Pet(const std::string &name, Kind type) : name(name), type(type) { }

 std::string name;
 Kind type;
 Attributes attr;
};

50 / 66

Enumerations and internal types (2/2)
The binding code for this example looks as follows:

py::class_<Pet> pet(m, "Pet");

pet.def(py::init<const std::string &, Pet::Kind>())
 .def_readwrite("name", &Pet::name)
 .def_readwrite("type", &Pet::type)
 .def_readwrite("attr", &Pet::attr);

py::enum_<Pet::Kind>(pet, "Kind")
 .value("Dog", Pet::Kind::Dog)
 .value("Cat", Pet::Kind::Cat)
 .export_values();

py::class_<Pet::Attributes>(pet, "Attributes")
 .def(py::init<>())
 .def_readwrite("age", &Pet::Attributes::age);

51 / 66

Scoping
To ensure that the nested types Kind and Attributes are created within the scope of Pet , the
pet class_ instance must be supplied to the enum_ and class_ constructor. The
enum_::export_values function exports the enum entries into the parent scope, which should be

skipped for newer C++11-style enum classes.

p = Pet("Lucy", Pet.Cat)
p.type # Output: Kind.Cat
int(p.type) # Output: 1L

The entries defined by the enumeration type are exposed in the __members__ property:

Pet.Kind.__members__ # Output: {'Dog': Kind.Dog, 'Cat': Kind.Cat}

The name property returns the name of the enum value as a unicode string. Contrary to Python
customs, enum values from the wrappers should not be compared using is , but with == .

52 / 66

How to build and import pybind11 modules

53 / 66

How to build and import pybind11 modules
The Python example and CMake example repositories good places to start to understand how
to build and import pybind11 modules. There are three main ways to do it:

1. Manual compilation.

2. Compilation using CMake .

3. Compilation using setuptools .

In order to be able to import the compiled module in Python, add the folder containing your
dynamic library to the environment variable PYTHONPATH accordingly.

54 / 66

https://github.com/pybind/python_example
https://github.com/pybind/cmake_example

Manual compilation
To manually compile C++ code with pybind11, use one of the following commands:

pybind11 installed via pip or conda.
g++ -O3 -Wall -shared -std=c++11 -fPIC \
 $(python3 -m pybind11 --includes) \
 example.cpp -o example$(python3-config --extension-suffix)

pybind11 built from source.
g++ -std=c++11 -O3 -shared -fPIC \
 -I/path/to/pybind11/include $(python3-config --cflags --ldflags --libs) \
 example.cpp -o example$(python3-config --extension-suffix)

pybind11 included as a Git submodule.
g++ -std=c++11 -O3 -shared -fPIC \
 -Iextern/pybind11/include $(python3-config --cflags --ldflags --libs) \
 example.cpp -o example$(python3-config --extension-suffix)

On macOS: add the -undefined dynamic_lookup flag so as to ignore missing symbols when
building the module. 55 / 66

How to compile using CMake (1/2)
To compile and run your pybind11 code with CMake, create a CMakeLists.txt script as follows:

cmake_minimum_required(VERSION 3.5)
project(example)

find_package(pybind11 REQUIRED)
include_directories(SYSTEM ${pybind11_INCLUDE_DIRS})
pybind11_add_module(example example.cpp)

or, if pybind11 is included as a subfolder:

cmake_minimum_required(VERSION 3.5)
project(example)

add_subdirectory(pybind11)
pybind11_add_module(example example.cpp)

Please refer to the CMake example repository for further details.
56 / 66

https://github.com/pybind/cmake_example

How to compile using CMake (2/2)
Then:

cd /path/to/example/
mkdir build && cd build
cmake -Dpybind11_DIR=/path/to/pybind ..
make -j<N>

57 / 66

How to compile using setuptools (1/3)
For projects on PyPI, building with setuptools is the way to go. Sylvain Corlay has kindly provided
an example project which shows how to set up everything, including automatic generation of
documentation using Sphinx. Please refer to the Python example repository for further details.

setup.py is a Python script commonly used in Python projects for tasks like building, distributing,
and installing module packages. In pybind11, it compiles and links C++ code into Python modules.

58 / 66

https://github.com/pybind/python_example

How to compile using setuptools (2/3)
Example of a setup.py file:

from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext
import sys
import setuptools

class get_pybind_include(object):
 # Helper class to determine the pybind11 include path.
 def __str__(self):
 import pybind11
 return pybind11.get_include()

ext_modules = [
 Extension(
 'your_module_name', # Name of the module.
 ['your_module.cpp'], # C++ source files.
 include_dirs=[
 get_pybind_include(), # Path to pybind11 includes.
 '/path/to/other/includes', # Additional include paths.
],
 language='c++'
),
]

setup(
 name='your_module_name',
 version='0.1',
 author='Your Name',
 author_email='your.email@example.com',
 description='A Python module using pybind11',
 long_description='',
 ext_modules=ext_modules,
 install_requires=['pybind11>=2.5.0'], # pybind11 requirement.
 cmdclass={'build_ext': build_ext},
 zip_safe=False,
)

59 / 66

How to compile using setuptools (3/3)
1. Create the setup.py file: Place it in your project's root directory.

2. Modify the file: Change your_module_name and your_module.cpp to your module's name
and C++ source file name. Adjust paths as needed.

3. Build the module:

python setup.py build_ext --inplace

This compiles the C++ code into a shared object file (.so).

4. Install the module:

python setup.py install # Or: pip install .

The build step of setuptools can be run through CMake itself. The CMake example repository
provides a prototype setup.py to adjust to your needs

Note: A similar approach using a pyproject.toml file is also possible. 60 / 66

https://github.com/pybind/cmake_example
https://github.com/pybind/cmake_example/blob/master/pyproject.toml

Examples

61 / 66

C++ vs. native Python benchmark (1/2)
The example provided in the c++_vs_py folder showcases a performance comparison test
between bound C++ code and native Python code on a simple linear algebra operation, such as a
matrix-matrix product.

The code can be compiled with:

g++ -O3 -Wall -shared -std=c++11 -fPIC \
 $(python3 -m pybind11 --includes) \
 matrix_multiplication.cpp -o matrix_ops$(python3-config --extension-suffix)

62 / 66

C++ vs. native Python benchmark (2/2)
Expected results
Typically, the C++ implementation should be significantly faster than the pure Python
implementation for several reasons:

Execution speed: C++ is a compiled language and is generally faster than Python, an
interpreted language, especially for computation-intensive tasks.

Optimization: Compilers for C++ can optimize the code for performance, whereas Python's
flexibility and dynamic typing can introduce overhead.

Handling of loops: C++ is more efficient in handling loops and arithmetic operations
compared to Python.

63 / 66

Notes
The actual performance gain can vary depending on the system, the size of the matrices, and
the compiler optimizations.

For matrix operations, libraries like NumPy in Python are highly optimized and can offer
performance close to C++, but in this comparison, we are using a pure Python
implementation to illustrate the difference more clearly.

Remember that developing and maintaining C++ code requires more effort compared to
Python, so the decision to use C++ should consider both performance benefits and
development costs.

64 / 66

Other examples
The examples provided in the examples folder are adapted and extended versions from this
GitHub repository . They demonstrate the use of pybind11 in various scenarios.

Further readings
pybind11 documentation

pybind11 testsuite

Using pybind11

65 / 66

https://github.com/tdegeus/pybind11_examples
https://github.com/tdegeus/pybind11_examples
https://pybind11.readthedocs.io/en/stable/
https://github.com/pybind/pybind11/tree/master/tests
https://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html

 Python's ecosystem for scientific computing.

66 / 66

	Page 1
	Lecture 12
	Integrating C++ and Python codes.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Pasquale Claudio Africa
	09 Dec 2024

	Page 2
	Outline

	Page 3
	Integrating C++ and Python

	Page 4
	Why integrating C++ and Python code

	Page 5
	Common libraries for C++ and Python integration (1/5)

	Page 6
	Common libraries for C++ and Python integration (2/5)

	Page 7
	Common libraries for C++ and Python integration (3/5)

	Page 8
	Common libraries for C++ and Python integration (4/5)

	Page 9
	Common libraries for C++ and Python integration (5/5)

	Page 10
	Why pybind11?

	Page 11
	PyPy and Numba overview

	Page 12
	pybind11: installation

	Page 13
	pybind11 overview

	Page 14
	How to install (1/3)
	Include with PyPI
	Include with conda-forge

	Page 15
	How to install (2/3)
	Global install with brew
	Build from source

	Page 16
	How to install (4/4)
	Include as a submodule

	Page 17
	pybind11: basics

	Page 18
	Header and namespace conventions

	Page 19
	Creating bindings for a simple function

	Page 20
	The PYBIND11_MODULE macro

	Page 21
	Note (1/2)

	Page 22
	Note (2/2)

	Page 23
	How to import a C++ bound module

	Page 24
	Keyword arguments

	Page 25
	Documentation

	Page 26
	Shorthand for keyword arguments

	Page 27
	Default arguments

	Page 28
	Exporting variables

	Page 29
	Supported data types

	Page 30
	pybind11: binding object-oriented code

	Page 31
	Creating bindings for a custom type

	Page 32
	class_

	Page 33
	Binding lambda functions (1/2)

	Page 34
	Binding lambda functions (2/2)

	Page 35
	Instance and static fields

	Page 36
	Private fields (1/2)

	Page 37
	Private fields (2/2)

	Page 38
	Dynamic attributes (1/3)

	Page 39
	Dynamic attributes (2/3)

	Page 40
	Dynamic attributes (3/3)

	Page 41
	Inheritance, downcasting and polymorphism (1/6)

	Page 42
	Inheritance, downcasting and polymorphism (2/6)

	Page 43
	Inheritance, downcasting and polymorphism (3/6)

	Page 44
	Inheritance, downcasting and polymorphism (4/6)

	Page 45
	Inheritance, downcasting and polymorphism (5/6)

	Page 46
	Inheritance, downcasting and polymorphism (6/6)

	Page 47
	Overloaded methods (1/2)

	Page 48
	Overloaded methods (2/2)

	Page 49
	Overloaded const methods

	Page 50
	Enumerations and internal types (1/2)

	Page 51
	Enumerations and internal types (2/2)

	Page 52
	Scoping

	Page 53
	How to build and import pybind11 modules

	Page 54
	How to build and import pybind11 modules

	Page 55
	Manual compilation

	Page 56
	How to compile using CMake (1/2)

	Page 57
	How to compile using CMake (2/2)

	Page 58
	How to compile using setuptools (1/3)

	Page 59
	How to compile using setuptools (2/3)

	Page 60
	How to compile using setuptools (3/3)

	Page 61
	Examples

	Page 62
	C++ vs. native Python benchmark (1/2)

	Page 63
	C++ vs. native Python benchmark (2/2)

	Page 64
	Notes

	Page 65
	Other examples
	Further readings

	Page 66
	➡️ Python's ecosystem for scientific computing.

