
Lecture 13

Python's ecosystem for scientific computing.

Advanced Programming - SISSA, UniTS, 2024-2025

Giuseppe Alessio D'Inverno

16 Dec 2024

1 / 104

Outline

1. The role of Python in modern scientific
computing

2. NumPy

Creating and manipulating arrays

Linear and matrix algebra

Data processing and beyond

3. SciPy

Relationship between NumPy and
SciPy

Core modules in SciPy

4. Data visualization

Overview of Matplotlib for plotting

Introduction to seaborn

5. pandas

Dataframes

Operations on dataframes

6. PyTorch

Neural networks

Part of these notes is re-adapted from these lectures (license). 2 / 104

http://github.com/jrjohansson/scientific-python-lectures
file:///home/runner/work/advanced_programming_2024-2025/advanced_programming_2024-2025/lectures/13/LICENSE_CC-BY-3.0-DEED.md

The role of Python in modern scientific
computing

3 / 104

The role of Python in modern scientific computing
Python has emerged as a pivotal language in scientific computing, distinguished by:

Intuitive and readable syntax, making coding accessible to scientists from various fields.

A vast array of libraries and tools tailored for scientific applications.

Python's versatility extends across numerous scientific domains:

In physics, it's used for simulations and theoretical calculations.

In biology and chemistry, Python aids in molecular modeling and genomic data analysis.

Its application in astronomy includes data processing from telescopes and space missions.

In environmental science, it's pivotal in climate modeling and biodiversity studies.

4 / 104

Python's library ecosystem for scientific computing
The power of Python in scientific computing is amplified by its extensive library ecosystem:

NumPy and SciPy are fundamental for numerical computations.

pandas enhances data manipulation and analysis capabilities.

Matplotlib and Seaborn excel in creating scientific visualizations.

TensorFlow and PyTorch are at the forefront of machine learning research and applications.

Python's role in democratizing scientific research is underscored by its open-source nature,
fostering collaboration and innovation.

5 / 104

Real-world applications of Python in scientific research
Python's impact in scientific research is evident through numerous real-world applications:

In physics, it has been used to analyze data from the Large Hadron Collider.

In biology, Python is integral in genome sequencing projects like the Human Genome Project.

Environmental scientists utilize Python in modeling the effects of climate change on different
ecosystems.

In astronomy, it played a key role in processing the first image of a black hole.

These applications underscore Python's versatility and effectiveness in advancing scientific
knowledge.

6 / 104

How to get your system ready
Most Python libraries can be installed with pip , with Conda , with a package manager on Linux
and macOS, or from source.

Using pip :

pip install numpy scipy matplotlib seaborn pandas

Using Conda :

conda create -n sci-env
conda activate sci-env
conda install numpy scipy matplotlib seaborn pandas

Best practices in setting up a scientific computing environment include creating isolated
environments and maintaining updated library versions.

7 / 104

https://conda.io/

NumPy

8 / 104

Introduction
NumPy is a core library for numerical computing in Python, offering an efficient interface for
working with arrays and matrices. Known for its high performance, it forms the basis of many other
scientific computing tools.

To get started with NumPy:

import numpy as np

NumPy arrays provide an efficient way to store and manipulate numerical data, offering
advantages over traditional Python lists, particularly in terms of performance and functionality.

9 / 104

Creating NumPy arrays
There are several ways to create arrays in NumPy:

Converting from Python lists or tuples.

Using array-generating functions like np.arange , np.linspace , etc.

Reading data from files.

10 / 104

From lists
Creating arrays from Python lists:

Creating a vector from a list
vector = np.array([1, 2, 3, 4])

Creating a matrix from a nested list
matrix = np.array([[1, 2], [3, 4]])

These arrays are instances of NumPy's ndarray type.

The shape of an array can be accessed using the shape attribute:

print(vector.shape) # Output: (4,)
print(matrix.shape) # Output: (2, 2)

11 / 104

Lists vs. NumPy arrays
NumPy arrays offer several advantages over Python lists, such as:

Faster access in reading and writing items.

More convenient and efficient for mathematical operations.

Occupying less memory.

Unlike Python lists, NumPy arrays are statically typed, homogeneous, memory-efficient, and
support efficient mathematical operations implemented in compiled languages like C and Fortran.

12 / 104

dtype (1/2)
The dtype (data type) property reveals the type of an array's data:

M.dtype

dtype('int64')

Attempting to assign an incompatible type raises an error:

M[0, 0] = "hello"

ValueError: invalid literal for long() with base 10: 'hello'

13 / 104

dtype (2/2)
Explicitly defining the array data type during creation is possible using the dtype keyword
argument:

M = np.array([[1, 2], [3, 4]], dtype=complex)

Common data types for dtype include int , float , complex , bool , and others. Additionally,
bit sizes like int64 , int16 , float128 , and complex128 can be specified.

14 / 104

Using array-generating functions (1/2)
NumPy provides various functions to generate arrays:

x = np.arange(0, 10, 1) # Arguments: start, stop, step.

Using linspace, where both end points are included.
x = np.linspace(0, 10, 25)

Create an array with logarithmically spaced elements.
x = np.logspace(0, 10, 10, base=np.e)

x, y = np.mgrid[0:5, 0:5] # Similar to 'meshgrid' in MATLAB.

15 / 104

Using array-generating functions (2/2)
Additional array-generating functions include random number generation, diagonal matrices,
zeros, and ones:

np.random.rand(5, 5) # Uniform random numbers in [0, 1].
np.random.randn(5, 5) # Standard normal distributed random numbers.
np.diag([1, 2, 3]) # Diagonal matrix.
np.diag([1, 2, 3], k=1) # Diagonal with an offset from the main diagonal.
np.zeros((3, 3))
np.ones((3, 3))

16 / 104

File I/O (1/2)

Comma-separated values (CSV)
Reading data from comma-separated values (CSV) files into NumPy arrays is accomplished using
np.genfromtxt :

data = np.genfromtxt('filename.csv')
data.shape

Storing a NumPy array to a CSV file can be done with np.savetxt :

M = random.rand(3, 3)
np.savetxt("random-matrix.csv", M)
np.savetxt("random-matrix.csv", M, fmt='%.5f') # fmt specifies the format.

17 / 104

File I/O (2/2)

NumPy's native file format
NumPy provides its own file format for storing and reading array data using np.save and
np.load :

np.save("random-matrix.npy", M)

np.load("random-matrix.npy")

18 / 104

Manipulating arrays

Indexing
Array elements are accessed using square brackets and indices for reading and writing:

v is a vector, taking one index.
v[0]

M is a matrix, taking two indices.
M[1, 1]

Omitting an index returns the whole row or a N-1 dimensional array.
M[1]

M[1, :] # Row 1.
M[:, 1] # Column 1.

19 / 104

Index slicing
Index slicing (M[lower:upper:step]) extracts portions of an array:

A = np.array([1, 2, 3, 4, 5])
A[1:3]
A[0:2] = [-2, -3]

A[::] # Lower, upper, and step default to the beginning, end, and 1.
A[::2] # Step is 2, lower and upper default to the beginning and end.
A[:3] # First three elements.
A[3:] # Elements from index 3.

Negative indices count from the end of the array.
A[-1] # The last element in the array.
A[-3:] # The last three elements.

20 / 104

Fancy indexing
Fancy indexing involves using an array or list in place of an index:

row_indices = [1, 2, 3]
A[row_indices]

col_indices = [1, 2, -1]
A[row_indices, col_indices]

Index masks, arrays of type bool , can also be used to select elements:

mask = np.array([True, False, True])
A[mask]

x = np.arange(0, 10, 0.5)
mask = (5 < x) * (x < 7.5)
x[mask]

21 / 104

Linear algebra (1/2)
NumPy is well-suited for linear algebra operations:

Scalar-array and element-wise array-array operations.

Matrix multiplication using the dot function or @ operator.

Computing inverses, determinants, and solving linear equations.

Scalar-array operations
Arithmetic operators are employed for scalar-array operations:

v1 = np.arange(0, 5)
v1 * 2
v1 + 2
A * 2
A + 2

22 / 104

Linear algebra (2/2)

Element-wise array-array operations
When we add, subtract, multiply and divide arrays with each other, the default behavior is
element-wise operations:

A * A
v1 * v1

If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:

A * v1

23 / 104

Matrix algebra (1/2)
What about matrix multiplication? There are two ways. We can either use the @ or dot function,
which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its arguments:

A @ A
np.dot(A, A)
np.dot(A, v1)
np.dot(v1, v1)

Alternatively, we can cast the array objects to the type matrix . This changes the behavior of the
standard arithmetic operators + , - , * to use matrix algebra.

M = np.matrix(A)
v = np.matrix(v1).T # Make it a column vector.
M * M
v.T * v, v + M * v

24 / 104

Matrix algebra (2/2)

Inverse and determinant

np.linalg.inv(M) # Same as M.I.
M.I * M

np.linalg.det(M)
np.linalg.det(M.I)

25 / 104

Data processing
NumPy provides various functions to calculate statistics of datasets in arrays. Here are some
examples:

np.mean(data[:, 3])
np.std(data[:, 3]), np.var(data[:, 3])
np.min(data[:, 3])
np.max(data[:, 3])

np.sum(d) # Sum up all elements.
np.prod(d + 1) # Product of all elements.
np.cumsum(d) # Cumulative sum.
np.cumprod(d + 1) # Cumulative product.

np.trace(A) # Same as: np.diag(A).sum()

26 / 104

Calculations with higher-dimensional data
When functions such as min , max , etc. are applied to multidimensional arrays, it is sometimes
useful to apply the calculation to the entire array or on a row or column basis. Using the axis
argument, we can specify how these functions should behave:

M = random.rand(3, 3)

M.max() # Global max.
M.max(axis=0) # Max in each column.
M.max(axis=1) # Max in each row.

Many other functions and methods in the array and matrix classes accept the same (optional)
axis keyword argument.

27 / 104

Reshaping, resizing, and stacking arrays
The shape of a NumPy array can be modified without copying the underlying data, making it a fast
operation even for large arrays:

n, m = A.shape
B = A.reshape((1, n * m))

B[0, 0:5] = 5 # Modify the array.
The original variable is also changed. B is only a different view of the same data.

We can also use the function flatten to make a higher-dimensional array into a vector. But this
function creates a copy of the data:

B = A.flatten()
B[0:5] = 10

28 / 104

Adding a new dimension: newaxis
With newaxis , we can insert new dimensions in an array, for example converting a vector to a
column or row matrix:

v = np.array([1, 2, 3])
np.shape(v)

(3,)

Make a column matrix of the vector v.
v[:, np.newaxis]

Make a row matrix of the vector v.
v[np.newaxis,:]

29 / 104

Stacking and repeating arrays (1/2)
Using functions repeat , tile , vstack , hstack , and concatenate , we can create larger
vectors and matrices from smaller ones:

a = np.array([[1, 2], [3, 4]])

Repeat each element 3 times.
np.repeat(a, 3)

array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])

Tile the matrix 3 times.
np.tile(a, 3)

array([[1, 2, 1, 2, 1, 2], [3, 4, 3, 4, 3, 4])

30 / 104

Stacking and repeating arrays (2/2)
b = np.array([[5, 6]])

Add a new row.
np.concatenate((a, b), axis=0)
Same as:
np.vstack((a, b))

Add a new column.
np.concatenate((a, b.T), axis=1)
Same as:
np.hstack((a, b.T))

31 / 104

Reference vs. deep copy
To achieve high performance, assignments in Python usually do not copy the underlying objects.
This is important, for example, when objects are passed between functions to avoid an excessive
amount of memory copying when it is not necessary:

A = np.array([[1, 2], [3, 4]])

B = A # B is referring to the same array data as A.
B[0, 0] = 10 # Changing B affects A.

C = np.copy(A) # Deep copy.
C[0, 0] = -5 # If we modify C, A is not affected.

32 / 104

Iterating over array elements (1/2)
Generally, we want to avoid iterating over the elements of arrays whenever possible. The Python
for loop is the most convenient way to iterate over an array when necessary:

v = np.array([1, 2, 3, 4])
for element in v:
 print(element)

M = np.array([[1, 2], [3, 4]])
for row in M:
 print("row", row)
 for element in row:
 print(element)

33 / 104

Iterating over array elements (2/2)
When we need to iterate over each element of an array and modify its elements, it is convenient to
use the enumerate function to obtain both the element and its index in the for loop:

for row_idx, row in enumerate(M):
 print("row_idx", row_idx, "row", row)

 for col_idx, element in enumerate(row):
 print("col_idx", col_idx, "element", element)

 # Update the matrix M: square each element.
 M[row_idx, col_idx] = element ** 2

34 / 104

Vectorizing functions (1/2)
As mentioned several times, to achieve good performance, we should avoid looping over
elements in our vectors and matrices and instead use vectorized algorithms. The first step is to
make sure that functions work with vector inputs:

def Heaviside(x):
 """
 Scalar implementation of the Heaviside step function.
 """
 if x >= 0:
 return 1
 else:
 return 0

Heaviside(np.array([-3, -2, -1, 0, 1, 2, 3]))

ValueError: The truth value of an array with more than one element is ambiguous. Use
a.any() or a.all()

35 / 104

Vectorizing functions (2/2)
Implement the function to accept a vector input from the beginning:

def Heaviside(x):
 """
 Vector-aware implementation of the Heaviside step function.
 """
 return 1 * (x >= 0)

Heaviside(np.array([-3, -2, -1, 0, 1, 2, 3]))

See also the NumPy function vectorize .

36 / 104

Using arrays in conditions
When using arrays in conditions, for example if statements and other boolean expressions, use
any or all , requiring that any or all elements in the array evaluate to True :

if (M > 5).any():
 print("At least one element in M is larger than 5.")

if (M > 5).all():
 print("All elements in M are larger than 5.")

37 / 104

Type casting
Since NumPy arrays are statically typed, the type of an array does not change once created. But
we can explicitly cast an array of some type to another using the astype functions (see also the
similar asarray function). This always creates a new array of new type:

M.dtype

dtype('int64')

M2 = M.astype(float)
M3 = M.astype(bool)

38 / 104

Further reading
NumPy documentation

NumPy tutorials

39 / 104

https://numpy.org/doc/stable/user/index.html
https://numpy.org/numpy-tutorials/index.html

SciPy

40 / 104

SciPy overview
SciPy, built on NumPy's foundation, offers higher-level scientific algorithms and modules for
specialized tasks like optimization, integration, signal processing, and linear algebra. It provides
seamless interoperability with NumPy for efficient data representation and manipulation.

Relationship between NumPy and SciPy:

NumPy serves as the foundation for numerical operations in SciPy.

SciPy utilizes NumPy arrays for efficient data representation.

Seamless interoperability between NumPy and SciPy.

NumPy for basic operations, SciPy for specialized tasks.

41 / 104

SciPy modules
scipy.special for special functions like Bessel or gamma functions.

scipy.integrate for numerical integration and solving differential equations.

scipy.optimize for optimization algorithms.

scipy.interpolate for interpolating functions and data.

scipy.fft for Fourier transforms.

scipy.signal for signal processing tools.

scipy.sparse for sparse matrices and related algorithms.

scipy.linalg for advanced linear algebra operations.

scipy.stats for statistical distributions and functions.

scipy.ndimage for multi-dimensional image processing.

scipy.io for file I/O operations.

42 / 104

https://docs.scipy.org/doc/scipy/reference/special.html
https://docs.scipy.org/doc/scipy/reference/integrate.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/fft.html
https://docs.scipy.org/doc/scipy/reference/signal.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/linalg.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://docs.scipy.org/doc/scipy/reference/io.html

Importing SciPy
In this lecture, we will explore how to use some of these subpackages.

To access the SciPy package in a Python program, we start by importing everything from the
scipy module:

from scipy import *

If we only need to use part of the SciPy framework, we can selectively include only those modules
we are interested in. For example, to include the linear algebra package under the name la , we
can do:

import scipy.linalg as la

43 / 104

Numerical integration (1/3)
For the numerical evaluation of a definite integral of the type , SciPy provides a series
of functions for different kinds of quadrature, such as quad , dblquad , and tplquad for single,
double, and triple integrals, respectively.

from scipy.integrate import quad, dblquad, tplquad

The quad function takes a large number of optional arguments, which can be used to fine-tune
the behavior of the function (try help(quad) for details).

44 / 104

Numerical integration (2/3)
The basic usage is as follows:

def f(x):
 return x

x_lower = 0
x_upper = 1

val, abserr = quad(f, x_lower, x_upper)

For simple functions, we can use a lambda function:

val, abserr = quad(lambda x: exp(-x ** 2), -Inf, Inf)

45 / 104

Numerical integration (3/3)
Higher-dimensional integration works in the same way:

def integrand(x, y):
 return exp(-x**2 - y**2)

x_lower = 0
x_upper = 10
y_lower = lambda x: x
y_upper = lambda x: x + 1

val, abserr = dblquad(integrand, x_lower, x_upper, y_lower, y_upper)

46 / 104

Ordinary Differential Equations (ODEs) (1/2)
A system of ODEs is usually formulated in standard form before it is attacked numerically. The
standard form is

where , and is some function that gives the derivatives of the
function .

To solve an ODE, we need to know the function and an initial condition, .

Note that higher-order ODEs can always be written in this form by introducing new variables for
the intermediate derivatives.

47 / 104

Ordinary Differential Equations (ODEs) (2/2)
SciPy provides two different ways to solve ODEs: an API based on the function odeint and an
object-oriented API based on the class ode . Usually, odeint is easier to get started with, but the
ode class offers some finer level of control. Here we will use the odeint functions. For more

information about the class ode , try help(ode) .

To use odeint , first import it from the scipy.integrate module

from scipy.integrate import odeint, ode

Once we have defined the Python function f and array y_0 , we can use odeint as:

y_t = odeint(f, y_0, t)

where t is an array with time-coordinates for which to solve the ODE problem. y_t is an array
with one row for each point in time in t , where each column corresponds to a solution at
that point in time. 48 / 104

Fourier transform
SciPy's fft module enables easy computation of Fourier transforms, a critical tool in
computational physics, signal processing and data analysis.

from scipy.fft import fft, ifft, fftfreq
import numpy as np

N = 600 # Number of sample points.

T = 1.0 / 800.0 # Sample spacing.

x = np.linspace(0.0, N*T, N, endpoint=False)
y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)

yf = fft(y)
xf = fftfreq(N, T)[:N//2]

49 / 104

Linear algebra
The linear algebra module contains various matrix-related functions, including linear equation
solving, eigenvalue solvers, matrix functions (e.g., matrix exponentiation), decompositions (SVD,
LU, Cholesky), etc.

Linear systems

from scipy.linalg import *

A = array([[1,2,3], [4,5,6], [7,8,9]])
b = array([1,2,3])

x = solve(A, b)

50 / 104

Linear algebra

Eigenvalues and eigenvectors
The eigenvalue problem for a matrix reads , where is the th eigenvector and

 is the th eigenvalue.

To calculate eigenvalues of a matrix, use the eigvals , and for calculating both eigenvalues and
eigenvectors, use the function eig :

lam = eigvals(A)
lam, v = eig(A)

The eigenvectors corresponding to the th eigenvalue (stored in lam[n]) is the th column in
v , i.e., v[:,n] .

There are also more specialized eigensolvers, like the eigh for Hermitian matrices.

51 / 104

Linear algebra

Matrix operations

inv(A) # Matrix inverse.
det(A) # Matrix determinant.

Matrix norms of various orders.
norm(A, ord=1)
norm(A, ord=2)
norm(A, ord=Inf)

52 / 104

Sparse matrices (1/3)
Sparse matrices are often useful in numerical simulations dealing with large systems, where the
problem can be described in matrix form, and matrices or vectors mostly contain zeros. SciPy has
good support for sparse matrices, with basic linear algebra operations (e.g., equation solving,
eigenvalue calculations, etc.).

There are many possible strategies for storing sparse matrices efficiently, such as coordinate form
(COO), list of lists (LIL) form, and compressed-sparse column CSC (and row, CSR). Each format
has some advantages and disadvantages. Most computational algorithms (equation solving,
matrix-matrix multiplication, etc.) can be efficiently implemented using CSR or CSC formats, but
they are not so intuitive and not so easy to initialize. So often, a sparse matrix is initially created in
COO or LIL format (where we can efficiently add elements to the sparse matrix data), and then
converted to CSC or CSR before used in real calculations.

53 / 104

Sparse matrices (2/3)
When we create a sparse matrix, we have to choose which format it should be stored in. For
example,

from scipy.sparse import *

Dense matrix.
M = array([[1,0,0,0], [0,3,0,0], [0,1,1,0], [1,0,0,1]])

Convert from dense to sparse.
A = csr_matrix(M)

Convert from sparse to dense.
A.todense()

54 / 104

Sparse matrices (3/3)
More efficient way to create sparse matrices: create an empty matrix and populate it using matrix
indexing (avoids creating a potentially large dense matrix).

A = lil_matrix((4,4)) # Empty 4x4 sparse matrix.
A[0,0] = 1
A[1,1] = 3
A[2,2] = A[2,1] = 1
A[3,3] = A[3,0] = 1

Sparse matrix - dense array multiplication.
A * v

LIL stands for LIsts of Lists.

55 / 104

Optimization
Optimization (finding minima or maxima of a function) is a large field in mathematics, and
optimization of complicated functions or in many variables can be rather involved.

Finding minima
We can use several algorithms to find the minima of a function:

from scipy import optimize

def f(x):
 return x**4 + 4*x**3 + (x-2)**2

x_min1 = optimize.fmin_bfgs(f, -2)
x_min2 = optimize.brent(f)
x_min3 = optimize.fminbound(f, -4, 2)

56 / 104

Optimization

Finding function roots
To find the root for a function of the form , we can use the fsolve function. It requires
an initial guess:

from scipy import optimize

def f(omega):
 return tan(2 * np.pi * omega) - 3.0 / omega

optimize.fsolve(f, 0.1)

57 / 104

Interpolation
The interp1d function, when given arrays describing X and Y data, returns an object that
behaves like a function that can be called for an arbitrary value of x (in the range covered by X),
and it returns the corresponding interpolated y value:

from scipy.interpolate import *

def f(x):
 return sin(x)

n = arange(0, 10)
x_meas = linspace(0, 9, 100)
y_meas = f(n) + 0.1 * randn(len(n))

linear_interpolation = interp1d(x_meas, y_meas)
y_interp1 = linear_interpolation(x)

cubic_interpolation = interp1d(x_meas, y_meas, kind='cubic')
y_interp2 = cubic_interpolation(x)

58 / 104

Statistics
The scipy.stats module contains a large number of statistical distributions, statistical functions,
and tests.

from scipy import stats

X = stats.poisson(3.5)
Y = stats.norm()

X.mean(), X.std(), X.var()
Y.mean(), Y.std(), Y.var()

59 / 104

Statistical tests
SciPy includes functions for conducting statistical tests, like t-tests and ANOVA, aiding in
hypothesis testing and data analysis.

Calculate the T-test for the means of two independent samples:

t_statistic, p_value = stats.ttest_ind(X.rvs(size=1000), X.rvs(size=1000))

Test if the mean of a single sample of data is 0.1:

stats.ttest_1samp(Y.rvs(size=1000), 0.1)

A low p-value means that we can reject the hypothesis.

60 / 104

Further reading
SciPy documentation

61 / 104

https://docs.scipy.org/doc/scipy/index.html

Data visualization

62 / 104

Introduction to Matplotlib and Seaborn
Data visualization plays a vital role in data analysis, enabling the effective communication of
complex information. Matplotlib and Seaborn are two widely-used Python libraries for data
visualization. Matplotlib offers a wide range of plotting tools, while Seaborn provides a high-level
interface for drawing attractive statistical graphics.

63 / 104

Matplotlib (1/2)
Matplotlib is a widely-used 2D plotting library in Python. It provides a high-level interface for
drawing attractive and informative statistical graphics. Let's start with a simple example to create a
basic line plot:

import matplotlib.pyplot as plt
import numpy as np

Generate data.
x = np.linspace(0, 10, 100)
y = np.sin(x)

Create a simple line plot.
plt.plot(x, y, label='sin(x)')
plt.title('Simple line plot')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.legend()
plt.show()

64 / 104

Matplotlib (2/2)
In this example, we use NumPy to generate data points for the x-axis and calculate corresponding
y-values. The plot function is then used to create a line plot. Finally, title , xlabel , ylabel ,
and legend functions are used to add a title, axis labels, and a legend to the plot.

Matplotlib supports various types of plots, including scatter plots, bar plots, histograms, and more.
Explore the documentation for more plot types and customization options.

65 / 104

2D plots with Matplotlib
Let's create a 2D contour plot using Matplotlib.

import matplotlib.pyplot as plt
import numpy as np

Generate data.
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

Create a 2D contour plot.
plt.contourf(X, Y, Z, cmap='viridis')
plt.colorbar(label='sin(sqrt(x^2 + y^2))')
plt.title('Contour plot')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.show()

66 / 104

Seaborn
Seaborn, built on Matplotlib, provides a more intuitive interface for creating statistical plots. It
integrates well with pandas data structures and offers built-in themes for enhanced visual appeal.

import seaborn as sns
import numpy as np

Generate data.
x = np.random.randn(100)
y = 2 * x + np.random.randn(100)

Create a scatter plot using Seaborn.
sns.scatterplot(x=x, y=y, color='blue')
plt.title('Scatter Plot with Seaborn')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.show()

67 / 104

Customizing histograms with Seaborn
Let's create a customized histogram with Seaborn, including specific bin edges, colors, and
additional statistical annotations.

import seaborn as sns
import matplotlib.pyplot as plt

Load a dataset.
tips = sns.load_dataset('tips')

Create a histogram with customizations.
sns.histplot(tips['total_bill'], bins=[10, 20, 30, 40, 50], color='salmon')
plt.title('Customized histogram')
plt.xlabel('Total bill ($)')
plt.ylabel('Frequency')

Annotate with mean and median.
plt.axvline(tips['total_bill'].mean(), color='blue', linestyle='dashed', linewidth=2, label='Mean')
plt.axvline(tips['total_bill'].median(), color='green', linestyle='dashed', linewidth=2, label='Median')

plt.legend()
plt.show()

68 / 104

Scatter plots with Seaborn
Create a scatter plot with Seaborn that includes a regression line, different colors based on a
categorical variable, and markers with varied sizes.

import seaborn as sns
import matplotlib.pyplot as plt

Load a dataset.
tips = sns.load_dataset('tips')

Create a scatter plot.
sns.scatterplot(x='total_bill', y='tip', hue='day', size='size', sizes=(20, 200),
 data=tips, palette='Set2', alpha=0.8)
plt.title('Advanced Scatter Plot')
plt.xlabel('Total bill ($)')
plt.ylabel('Tip ($)')
plt.legend(title='Day')
plt.show()

69 / 104

Combining Matplotlib and Seaborn
One of the strengths of Seaborn is its ability to work seamlessly with Matplotlib. You can use
Matplotlib functions alongside Seaborn to customize your plots further. Here's an example
combining Matplotlib and Seaborn to create a histogram with a kernel density estimate:

import seaborn as sns
import matplotlib.pyplot as plt

Load a dataset.
tips = sns.load_dataset('tips')

Create a histogram with a Kernel Density Estimate using Seaborn.
sns.histplot(tips['total_bill'], kde=True, color='skyblue')

Customize Matplotlib features.
plt.title('Histogram with KDE')
plt.xlabel('Total bill ($)')
plt.ylabel('Frequency')
plt.show()

70 / 104

Advanced plotting
Matplotlib supports advanced plots like contour plots, 3D plots, and subplots:

Contour plots for visualizing three-dimensional data.

Subplots for displaying multiple plots in a single figure.

Seaborn excels in creating complex statistical plots:

Heatmaps for representing matrix data.

Pair plots for exploring relationships in a dataset.

Facet grids for plotting subsets of data on multiple axes.

Matplotlib and Seaborn can directly plot from pandas DataFrame, simplifying the workflow in data
analysis tasks.

71 / 104

Further reading
Matplotlib documentation

Seaborn documentation

72 / 104

https://matplotlib.org/
https://seaborn.pydata.org/

pandas

73 / 104

pandas overview
pandas is a powerful Python library for data manipulation and analysis. It provides fast, flexible
data structures like Series and DataFrame, designed to work with structured data intuitively and
efficiently.

In the pandas library, the standard import convention involves using the aliases np for NumPy
and pd for pandas:

import numpy as np
import pandas as pd

Fundamental data structures in pandas
Series: A one-dimensional labeled array that can hold various data types.

DataFrame: A two-dimensional, size-mutable, and potentially heterogeneous tabular data
structure with labeled axes (rows and columns).

74 / 104

Creating objects (1/2)

Series creation
You can create a Series by providing a list of values. pandas will generate a default RangeIndex:

s = pd.Series([1, 3, 5, np.nan, 6, 8])

DataFrame creation
Creating a DataFrame involves passing a NumPy array with a datetime index and labeled
columns:

dates = pd.date_range("20130101", periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))

75 / 104

Creating objects (2/2)

DataFrame creation
Alternatively, a DataFrame can be formed from a dictionary of objects:

df2 = pd.DataFrame(
 {
 "A": 1.0,
 "B": pd.Timestamp("20130102"),
 "C": pd.Series(1, index=list(range(4)), dtype="float32"),
 "D": np.array([3] * 4, dtype="int32"),
 "E": pd.Categorical(["test", "train", "test", "train"]),
 "F": "foo",
 }
)

The resulting DataFrame has diverse data types.

76 / 104

Viewing data
To examine the top and bottom rows of a DataFrame, use head() and tail() :

df.head()
df.tail(3)

Retrieve the DataFrame's index or column labels:

df.index
df.columns

df.to_numpy() # Convert the DataFrame to a NumPy array.

Note: NumPy arrays have one dtype for the entire array while pandas DataFrames have one
dtype per column. When you call DataFrame.to_numpy() , pandas will find the NumPy dtype
that can hold all of the dtypes in the DataFrame. If the common data type is object ,
DataFrame.to_numpy will require copying data.

77 / 104

Data selection (1/3)
pandas offers various methods for data selection. We'll explore both label-based and position-
based approaches.

For a DataFrame, passing a single label selects a columns and yields a Series equivalent to
df.A :

df["A"]

Passing a slice : selects matching rows:

df[0:3]
df["20130102":"20130104"]

78 / 104

Data selection (2/3)

Label-based selection
Use loc and at for label-based indexing:

df.loc[dates[0]] # Selecting a row by label.
df.loc[:, ["A", "B"]] # Selecting all rows for specific columns.
df.loc["20130102":"20130104", ["A", "B"]] # Both endpoints are included.
df.at[dates[0], "A"] # Fast scalar access.

Position-based selection
For position-based indexing, employ iloc and iat :

df.iloc[3] # Selecting via position.
df.iloc[3:5, 0:2] # Slicing rows and columns.
df.iat[1, 1] # Fast scalar access.

79 / 104

Data selection (3/3)
Selecting values from a DataFrame where a boolean condition is met:

df[df > 0]

Select rows based on a condition:

df[df["A"] > 0]

Use Series.isin method for filtering:

df2 = df.copy()
df2["E"] = ["one", "one", "two", "three", "four", "three"]
df2[df2["E"].isin(["two", "four"])]

80 / 104

Viewing and sorting data
Generate quick statistics using describe() :

df.describe()

Transpose the DataFrame with .T :

df.T

Sort the DataFrame by index or values:

df.sort_index(axis=1, ascending=False) # Sort by index.
df.sort_values(by="B") # Sort by values.

81 / 104

Operations (1/3)

Statistics
Compute the mean for each column or row:

df.mean()
df.mean(axis=1)

Operations with Series or DataFrame
Perform operations with another Series or DataFrame:

s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
df.sub(s, axis="index")

82 / 104

Operations (2/3)

User-defined functions
Apply user-defined functions using agg and transform :

Calculate the mean of each column and then multiply it by 5.6.
The result will be a pandas Series with the aggregated value for each column in df.
df.agg(lambda x: np.mean(x) * 5.6)

Apply a function to each element of the DataFrame.
df.transform(lambda x: x * 101.2)

Value counts
Compute value counts for a Series:

s = pd.Series(np.random.randint(0, 7, size=10))
s.value_counts()

83 / 104

Operations (3/3)
pandas simplifies handling missing data using methods like dropna() , fillna() , and
interpolate() .

Transform data using operations like pivoting, melting, and applying custom functions.

pandas excels in time series data analysis, offering functionalities for resampling, shifting, and
window operations.

pandas supports categorical data types, which can be more efficient and expressive for certain
types of data.

84 / 104

Plotting
pandas integrates with Matplotlib for easy data visualization. Here's a basic example:

import matplotlib.pyplot as plt

ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts = ts.cumsum()

ts.plot()
plt.show()

85 / 104

Importing and exporting data
pandas can read and write to various file formats, including CSV, Excel, SQL, and more.

CSV

df = pd.DataFrame(np.random.randint(0, 5, (10, 5)))
df.to_csv("foo.csv")
pd.read_csv("foo.csv")

Excel

df.to_excel("foo.xlsx", sheet_name="Sheet1")
pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"])

86 / 104

Further reading
pandas documentation

10 minutes to pandas

87 / 104

https://pandas.pydata.org/
https://pandas.pydata.org/docs/user_guide/10min.html

PyTorch

88 / 104

PyTorch
Quoting the official PyTorch tutorial introduction :
PyTorch is a Python-based scientific computing package serving two broad purposes:

a replacement for NumPy to use the power of GPUs and other accelerators.

an automatic differentiation library that is useful to implement neural networks.

The package is imported in Python with import torch .

89 / 104

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

PyTorch: the class Tensor (1/2)
Tensors are the PyTorch equivalent to Numpy arrays, with the addition to also have support for
GPU acceleration.
In multilinear algebra, tensor is a generalization of vector and matrix concepts:

a vector is a 1-D tensor

a matrix a 2-D tensor
A tensor can simply be initialized calling torch.Tensor :

x = torch.Tensor(2,3,4)
tensor([[[6.5254e+10, 3.0890e-41, 4.2039e-45, -6.3663e-15],
[6.5246e+10, 3.0890e-41, 1.6367e-42, 4.5787e-41],
[6.5254e+10, 3.0890e-41, 4.2039e-45, 4.5787e-41]],
[[6.5255e+10, 3.0890e-41, 1.4013e-45, 0.0000e+00],
[6.5255e+10, 3.0890e-41, 6.5246e+10, 3.0890e-41],
[1.7404e-42, -5.0820e+26, 6.5255e+10, 3.0890e-41]]])

90 / 104

PyTorch: the class Tensor (2/2)
The function torch.Tensor allocates memory for the desired tensor, but reuses any values that
have already been in the memory. To directly assign values to the tensor during initialization, there
are many alternatives including:

torch.zeros , torch.ones , torch.rand , torch.randn , torch.arange ..

torch.Tensor : (input list): Creates a tensor from the list elements you provide

Create a tensor from a (nested) list
x = torch.Tensor([[1, 2], [3, 4]])
print(x)
tensor([[1., 2.],
[3., 4.]])

Tensors can be converted to numpy arrays (.numpy()), and numpy arrays back to tensors
(torch.from_numpy()).

91 / 104

PyTorch: operations with Tensors (1/2)
Most operations that exist in numpy, also exist in PyTorch.
Another common operation aims at changing the shape of a tensor. In PyTorch, this operation is
called view :

x = torch.arange(6)
print("X", x)
#X tensor([0, 1, 2, 3, 4, 5])
x = x.view(2, 3)
print("X", x)
#X tensor([[0, 1, 2],
[3, 4, 5]])

92 / 104

PyTorch: operations with Tensors (2/2)
Other commonly used operations include matrix multiplications, which are essential for neural
networks:

torch.matmul : Performs the matrix product over two tensors, where the specific behavior
depends on the dimensions

torch.mm : Performs the matrix product over two tensors, where the specific behavior
depends on the dimensions

torch.bmm : Performs the matrix product with a support batch dimension: If the first tensor
is of shape , and the second tensor , the output is of shape

, and has been calculated by performing b matrix multiplications of the
submatrices of and :

torch.einsum : Performs matrix multiplications and more (i.e. sums of products) using the
Einstein summation convention.

93 / 104

PyTorch: Dynamic Computation Graph (1/3)
One of the main reasons for using PyTorch in Deep Learning projects is that we can automatically
get gradients/derivatives of functions that we define.
We will mainly use PyTorch for implementing neural networks, and they are just fancy functions. If
we use weight matrices in our function that we want to learn, then those are called the
parameters or simply the weights.
Given an input x , we define our function by manipulating that input, usually by matrix-
multiplications with weight matrices and additions with so-called bias vectors. As we manipulate
our input, we are automatically creating a computational graph.
This graph shows how to arrive at our output from our input. PyTorch is a define-by-run
framework; this means that we can just do our manipulations, and PyTorch will keep track of that
graph for us. Thus, we create a dynamic computation graph along the way.

94 / 104

PyTorch: Dynamic Computation Graph (2/3)
Example: let's compute the computational graph of the function

x = torch.arange(3, dtype=torch.float32, requires_grad=True) # Only float tensors can have gradients
X tensor([0., 1., 2.], requires_grad=True)

a = x + 2
b = a ** 2
c = b + 3
y = c.mean()
print("Y", y)
Y tensor(12.6667, grad_fn=<MeanBackward0>)

We can perform backpropagation on the computation graph by calling the function backward()
on the last output, which effectively calculates the gradients for each tensor that has the property
requires_grad=True . 95 / 104

PyTorch: Dynamic Computation Graph (3/3)
Computing y.backward() , now x.grad will contain the gradient :

y.backward()
print(x.grad)
tensor([1.3333, 2.0000, 2.6667])

PyTorch calculates the gradients using the chain rule:

Ex: try to compute the gradient by hand!

96 / 104

PyTorch: GPU support
A crucial feature of PyTorch is the support of GPUs, short for Graphics Processing Unit. A GPU
can perform many thousands of small operations in parallel, making it very well suitable for
performing large matrix operations in neural networks.
To check if we have a GPU available:

gpu_avail = torch.cuda.is_available()
print(f"Is the GPU available? {gpu_avail}")
Is the GPU available? True

You can write your code with respect to this device object, and it allows you to run the same code
on both a CPU-only system, and one with a GPU. Let’s try it below. We can specify the device as
follows:

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print("Device", device)
Device cuda

97 / 104

Designing Neural Networks with PyTorch
PyTorch is designed to build custom neural networks

The package torch.nn makes building neural networks more convenient

the easiest way to build neural networks is with Modules:

class MyModule(nn.Module):

 def __init__(self):
 super().__init__()
 # Some init for my module

 def forward(self, x):
 # Function for performing the calculation of the module.
 pass

98 / 104

The DataLoader class
The class torch.utils.data.DataLoader represents a Python iterable over a dataset with
support for automatic batching, multi-process data loading and many more features. The data
loader communicates with the dataset using the function __getitem__ , and stacks its outputs as
tensors over the first dimension to form a batch. In contrast to the dataset class, we usually don’t
have to define our own data loader class, but can just create an object of it with the dataset as
input. Additionally, we can configure our data loader with the following input arguments (only a
selection, see full list here):

batch_size : Number of samples to stack per batch

shuffle : If True, the data is returned in a random order. This is important during training for
introducing stochasticity

...

99 / 104

Optimization (1/3)
After defining the model and the dataset, it is time to prepare the optimization of the model. During
training, we will perform the following steps:

Get a batch from the data loader

Obtain the predictions from the model for the batch

Calculate the loss based on the difference between predictions and labels

Backpropagation: calculate the gradients for every parameter with respect to the loss

Update the parameters of the model in the direction of the gradients

100 / 104

Optimization (2/3): The Loss function
We can calculate the loss for a batch by simply performing a few tensor operations as those are
automatically added to the computation graph. For instance, for regression we can use Mean
Squared Error (MSE) which is defined as

where is the model prediction given the sample and is the label for .

101 / 104

Optimization (3/3): The optimizer
For updating the parameters, PyTorch provides the package torch.optim .
The simplest of them is the Stochastic Gradient Descent (SGD): `torch.optim.SGD. Stochastic
Gradient Descent updates parameters by multiplying the gradients with a small constant, called
learning rate, and subtracting those from the parameters (hence minimizing the loss).

Input to the optimizer are the parameters of the model: model.parameters()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

Now we are ready to train the model (see notebook).

102 / 104

Further reading
PyTorch documentation

UvA DL Notebooks : very nice tutorials from the DL group in Amsterdam

103 / 104

https://pytorch.org/docs/stable/index.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial2/Introduction_to_PyTorch.html

 That's all Folks!

104 / 104

	Page 1
	Lecture 13
	Python's ecosystem for scientific computing.
	Advanced Programming - SISSA, UniTS, 2024-2025
	Giuseppe Alessio D'Inverno
	16 Dec 2024

	Page 2
	Outline

	Page 3
	The role of Python in modern scientific computing

	Page 4
	The role of Python in modern scientific computing

	Page 5
	Python's library ecosystem for scientific computing

	Page 6
	Real-world applications of Python in scientific research

	Page 7
	How to get your system ready

	Page 8
	NumPy

	Page 9
	Introduction

	Page 10
	Creating NumPy arrays

	Page 11
	From lists

	Page 12
	Lists vs. NumPy arrays

	Page 13
	dtype (1/2)

	Page 14
	dtype (2/2)

	Page 15
	Using array-generating functions (1/2)

	Page 16
	Using array-generating functions (2/2)

	Page 17
	File I/O (1/2)
	Comma-separated values (CSV)

	Page 18
	File I/O (2/2)
	NumPy's native file format

	Page 19
	Manipulating arrays
	Indexing

	Page 20
	Index slicing

	Page 21
	Fancy indexing

	Page 22
	Linear algebra (1/2)
	Scalar-array operations

	Page 23
	Linear algebra (2/2)
	Element-wise array-array operations

	Page 24
	Matrix algebra (1/2)

	Page 25
	Matrix algebra (2/2)
	Inverse and determinant

	Page 26
	Data processing

	Page 27
	Calculations with higher-dimensional data

	Page 28
	Reshaping, resizing, and stacking arrays

	Page 29
	Adding a new dimension: newaxis

	Page 30
	Stacking and repeating arrays (1/2)

	Page 31
	Stacking and repeating arrays (2/2)

	Page 32
	Reference vs. deep copy

	Page 33
	Iterating over array elements (1/2)

	Page 34
	Iterating over array elements (2/2)

	Page 35
	Vectorizing functions (1/2)

	Page 36
	Vectorizing functions (2/2)

	Page 37
	Using arrays in conditions

	Page 38
	Type casting

	Page 39
	Further reading

	Page 40
	SciPy

	Page 41
	SciPy overview

	Page 42
	SciPy modules

	Page 43
	Importing SciPy

	Page 44
	Numerical integration (1/3)

	Page 45
	Numerical integration (2/3)

	Page 46
	Numerical integration (3/3)

	Page 47
	Ordinary Differential Equations (ODEs) (1/2)

	Page 48
	Ordinary Differential Equations (ODEs) (2/2)

	Page 49
	Fourier transform

	Page 50
	Linear algebra
	Linear systems

	Page 51
	Linear algebra
	Eigenvalues and eigenvectors

	Page 52
	Linear algebra
	Matrix operations

	Page 53
	Sparse matrices (1/3)

	Page 54
	Sparse matrices (2/3)

	Page 55
	Sparse matrices (3/3)

	Page 56
	Optimization
	Finding minima

	Page 57
	Optimization
	Finding function roots

	Page 58
	Interpolation

	Page 59
	Statistics

	Page 60
	Statistical tests

	Page 61
	Further reading

	Page 62
	Data visualization

	Page 63
	Introduction to Matplotlib and Seaborn

	Page 64
	Matplotlib (1/2)

	Page 65
	Matplotlib (2/2)

	Page 66
	2D plots with Matplotlib

	Page 67
	Seaborn

	Page 68
	Customizing histograms with Seaborn

	Page 69
	Scatter plots with Seaborn

	Page 70
	Combining Matplotlib and Seaborn

	Page 71
	Advanced plotting

	Page 72
	Further reading

	Page 73
	pandas

	Page 74
	pandas overview
	Fundamental data structures in pandas

	Page 75
	Creating objects (1/2)
	Series creation
	DataFrame creation

	Page 76
	Creating objects (2/2)
	DataFrame creation

	Page 77
	Viewing data

	Page 78
	Data selection (1/3)

	Page 79
	Data selection (2/3)
	Label-based selection
	Position-based selection

	Page 80
	Data selection (3/3)

	Page 81
	Viewing and sorting data

	Page 82
	Operations (1/3)
	Statistics
	Operations with Series or DataFrame

	Page 83
	Operations (2/3)
	User-defined functions
	Value counts

	Page 84
	Operations (3/3)

	Page 85
	Plotting

	Page 86
	Importing and exporting data
	CSV
	Excel

	Page 87
	Further reading

	Page 88
	PyTorch

	Page 89
	PyTorch

	Page 90
	PyTorch: the class Tensor (1/2)

	Page 91
	PyTorch: the class Tensor (2/2)

	Page 92
	PyTorch: operations with Tensors (1/2)

	Page 93
	PyTorch: operations with Tensors (2/2)

	Page 94
	PyTorch: Dynamic Computation Graph (1/3)

	Page 95
	PyTorch: Dynamic Computation Graph (2/3)

	Page 96
	PyTorch: Dynamic Computation Graph (3/3)

	Page 97
	PyTorch: GPU support

	Page 98
	Designing Neural Networks with PyTorch

	Page 99
	The DataLoader class

	Page 100
	Optimization (1/3)

	Page 101
	Optimization (2/3): The Loss function

	Page 102
	Optimization (3/3): The optimizer

	Page 103
	Further reading

	Page 104
	🎉 That's all Folks!

