Exercise session 04

Inheritance and polymorphism in C++.

Advanced Programming - SISSA, UniTS, 2025-2026
Pasquale Claudio Africa

22 Oct 2025

1/9



Exercise 1: inheritance and polymorphism for data
analysis

Create a C++ program that models different types of data sources and transformation objects.

1. Define an abstract class DataSource with attributes and methods that represent common
properties of data sources. Create derived classes such as FileDataSource and

ConsoleDataSource .

2. Define an abstract class bataTransformer with a virtual method for data transformation.
Create derived classes such as LinearScaler , LogTransformer , and StandardScaler
that implement specific data transformation methods.

3. Test all functionalities by prompting the user with proper guestions.

219



Exercise 1 (1/5)

1. Define an abstract class DataSource with a string attribute name , a vector data , a method

display_info() and a pure virtual method read_data() .
2. Implement a constructor and a virtual destructor in the DataSource class.

3. Create derived classes FileDataSource and ConsoleDataSource that inherit from
DataSource .

4. Implement constructors for all classes to model different data source types. For example,
FileDataSource should initialize a filename and an input file, ConsoleDataSource should
have a default constructor.

5. Implement destructors for the derived classes. For example, the FileDataSource constructor
should open the file, and its destructor should close it.

3/9



Exercise 1 (2/5)

1. Implement the read_data() methods. FileDataSource::read_data() should import values
from a file (see data.txt as an example), whereas ConsoleDataSource::read_data()
should read a list of values from the standard input.

2. Create objects of these classes and demonstrate inheritance. For example, create a
FileDataSource object and call display_info() and read_data() methods to read and

display data from a file.

3. Ensure that resources associated with data sources are properly managed during
construction and destruction.

4/9



Exercise 1 (3/5)

1. Define a base class DataTransformer , bound to DataSource by polymorphic composition.
DataTransformer should have a pure virtual method transform() that transforms the

data vector in the corresponding DataSource .

2. Create derived classes LinearScaler , LogTransformer , and StandardScaler that inherit

from DataTransformer .

3. Override the transform() method in each derived class to provide specific data
transformation. For example, LinearScaler scales the data by multiplying them by a given
scaling factor, LogTransformer applies a logarithmic transformation and sets negative
entriesto @ ,and Standardscaler performs standardization to the |0, 1] interval.

4. Create objects of these classes and demonstrate their use to transform the previously defined
DataSource oObject.

5/9



Exercise 1 (4/5)

1. Use the DataSource andthe DataTransformer hierarchy polymorphically. In particular, the
program should prompt the user to import data either from a file or from console, and to select
the transformation method.

2. Display the original and the transformed data.

6/9



Exercise 1 (5/5)

Possibilities for extensions

1.

In case a FileDataSource IS selected, prompt the user to specify the filename from the
console.

In case a LinearScaler IS selected, prompt the user to specify the scaling factor from the
console.

Add a new class to the DataSource hierarchy to import a given field from an input csv file
(see data.csv as an example).

Write a class or method to overwrite the original data from the text or csv file with the
transformed ones.

719



Exercise 2: automatic differentiation (1/2)

Implement a C++ framework for computing derivatives of arbitrary functions using a polymorphic
approach. The goal is to create a structure that can handle common arithmetic operations, such as
addition, subtraction, multiplication, division, and exponentiation, on values and their derivatives.

Test the program to compute the value and the derivative of the polynomial
f(z) = 22 — 32% 4 4z — 5 and of the function g(z) = =5 atz = 2,

8/9



Exercise 2: automatic differentiation (2/2)

1. Define an abstract base class ADExpression with two pure virtual functions:
o double evaluate() : This function returns the value of the variable.

o double derivative() : This function returns the derivative of the variable.

2. Implement a concrete class Scalar that inherits from ADExpression . This class represents
a scalar variable and its derivative.

3. Implement the following operation classes that also inherit from ADExpression :
o Sum : Represents the addition of two ADExpression objects.

o Difference : Represents the subtraction of two ADExpression objects.
o Product : Represents the multiplication of two ADExpression objects.
o Division : Represents the division of two ADExpression objects.

o Power : Represents raising an ADExpression object to a constant exponent.
These classes take suitable ADExpression objects and/or other input from the

constructor.
9/9



	Page 1
	Exercise session 04
	Inheritance and polymorphism in C++.
	Advanced Programming - SISSA, UniTS, 2025-2026
	Pasquale Claudio Africa
	22 Oct 2025




	Page 2
	Exercise 1: inheritance and polymorphism for data analysis

	Page 3
	Exercise 1 (1/5)

	Page 4
	Exercise 1 (2/5)

	Page 5
	Exercise 1 (3/5)

	Page 6
	Exercise 1 (4/5)

	Page 7
	Exercise 1 (5/5)
	Possibilities for extensions


	Page 8
	Exercise 2: automatic differentiation (1/2)

	Page 9
	Exercise 2: automatic differentiation (2/2)


