Exercise session 05

Functions. Templates and generic programming in C++,

Advanced Programming - SISSA, UniTS, 2025-2026
Pasquale Claudio Africa

29 Oct 2025

1/7

Exercise 1: lambda functions

Starting from the hints/ex1.cpp source file, create a C++ program that calculates the total cost
of a given list of products.

1. Use std::accumulate to calculate the total cost of the products, passing a custom lambda
function.

2. Display the results after each step (partial sums) and the total cost to check for correctness.

217

Exercise 2: function pointers, functors, lambdas

Starting from the hints/ex2.cpp source file, develop a library management system with search
capabilities using lambdas and functors.
1. Using std::sort , sort the books:

o In ascending order based on year, using a function pointer as a comparator.
o In descending order based on year, using a lambda function as a comparator.

o |In ascending order based on the author name, using a functor as a comparator.

2. Using std::copy_if , fill a new vector filtered_books by extracting from books only the
books written by a specific author. Implement the search functional using lambdas.

3. Display the results after each step to check for correctness.

317

Exercise 3: function wrappers, templates (1/2)

The hints/ex3/ folder provides a partial C++ implementation of the Newton method to
approximate the root(s) of a function f, i.e., to solve the problem f(z) = 0.

Newton's method in a nutshell

Starting with an initial guess for the root(s) of the function, denoted as 20

estimate using the formula

, repeatedly refine the

where f'(z) is the derivative of f(x).

(k+1) _ . (k)

The iterations continue until the difference between two consecutive estimates, |x a:(IS
smaller than a predefined tolerance. If the condition is not met within a maximum number of

iterations, the algorithm failed to reach converge and the solver returns NaN .

417

Exercise 3: function wrappers, templates (2/2)

1. Fill in the missing parts to make the program work with real-valued scalar functions.
2. Use the program to solve f(z) = 22 — 1 = 0, starting from 29 = 0.5.

3. Templatize the solver to be able to deal with more general functions, such as complex-valued

functions.
Use the program to solve f(z) = 2 + 1 = 0, starting from (¥ = 0.5 + 0.54.

4. How would you organize the project files? Is it better to keep everything in header files, or
splitting declarations and definitions in header and source files by providing explicit
Instantiations? Try both alternatives.

517

A note on the use of template arguments as policies

I In C++, template arguments can be used as policies.

This allows you to customize the behavior of a class or function without changing its core
Implementation. As templates provide a way to write generic code that can work with different data
types, policies provide a way to write generic code that can behave according to different
algorithms or strategies.

When you use a template argument as a policy, you are essentially saying, "Here is a piece of
code, and | want to let users decide certain aspects of its behavior." This can include things like
how elements are compared, how data is stored, which specific algorithm to apply, or how certain
operations are performed.

See the example included in the examples folder.

6/7

Exercise 4: template metaprogramming

Use template metaprogramming to calculate the factorial of an integer at compile time.

1. Define a template class for calculating the factorial of an integer.
2. Instantiate the template for the integers 5, 7, and 10.
3. Use static_assert to ensure that values are computed at compile time rather than runtime.

4. Print the results of the factorials.

717

	Page 1
	Exercise session 05
	Functions. Templates and generic programming in C++.
	Advanced Programming - SISSA, UniTS, 2025-2026
	Pasquale Claudio Africa
	29 Oct 2025

	Page 2
	Exercise 1: lambda functions

	Page 3
	Exercise 2: function pointers, functors, lambdas

	Page 4
	Exercise 3: function wrappers, templates (1/2)
	Newton's method in a nutshell

	Page 5
	Exercise 3: function wrappers, templates (2/2)

	Page 6
	A note on the use of template arguments as policies

	Page 7
	Exercise 4: template metaprogramming

