Homework 01

Implementation of a sparse matrix class

Advanced Programming - SISSA, UniTS, 2025-2026

Pasquale Claudio Africa, Giuseppe Alessio D'Inverno

Due date: 09 Nov 2025

1/9

What is a sparse matrix?
Quoting from [IEEEY

A sparse matrix is a matrix in which most of the elements are zero. There is no strict
definition regarding the proportion of zero-value elements for a matrix to qualify as sparse,
but a common criterion is that the number of non-zero elements is roughly equal to the
number of rows or columns.

The goal of this assignment is to create a C++ code implementing the concept of a sparse matrix
while efficiently storing only the non-zero elements.

219

https://en.wikipedia.org/wiki/Sparse_matrix

Storage schemes

There are several efficient ways to store a sparse matrix. In this homework, you are asked to
Implement and validate two popular storage schemes, namely the Coordinate (COO) and
Compressed Sparse Row (CSR) formats.

Consider the following matrix as an example:

A=

0

0
0
0

N O O O

3.1

o O O O

3/9

Coordinate (COO) format

A can be stored using three arrays of length nnz (number of non-zeros):

« An array values containing all the nonzero values.
« Anarray rows of integers containing their corresponding row indices.

« An array cols of integers containing their corresponding column indices.
For the example at hand, reading the matrix row-by-row (left-to-right), we have:

e values = [3.1, 4, 5, 7.4, 2, 6]
®* rows =[0o, o, 1, 1, 3, 3]

e columns = [2, 4, 2, 4, 1, 3]

This expresses that entry 3.1 is stored in row 0, column 2, entry 5 is stored in row 1, column 2,
and so on.

4/9

Compressed Sparse Row (CSR) format

This format employs again three arrays to represent A:

« An array values containing all the nonzero values (length nnz),
« An array columns of integers containing their column indices (length nnz),

e An array row_idx of integers with the cumulative number of nonzero entries up to the 2-th
row (excluded). The length of such array is n,,ws + 1. By convention, we assume that

In such a way, the quantity row_idx[i+1] - row_idx[i] represents the number of nonzero

row_idx[0] = 0.

elements in the 2-th row.

For the example at hand, we get:

values
columns

row_idx

[3.1, 4, 5, 7.4, 2, 6]
[21 4/ 2/ 4/ 1/ 3]

[OI 2’ 4’ 4’ 6]

5/9

Code organization

e Separate class/function declarations and definitions in different files.

e Provide a main.cpp file to test and demonstrate the correctness of the proposed
Implementation.

e Document your code with comments to explain your design choices.

Compilation
Compile your code using the following [efslgalellE=lilelaRiFTe[] :

g++ -std=c++17 -Wall -Wpedantic main.cpp [other_files.cpp] -0 sparse_matrix

Provide clear instructions on how to compile and run your code or, preferably, a working
compilation script.

6/9

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

Interface

You are required to implement an abstract base class SparseMatrix that provides a public
Interface to perform the following operations:

1.
2.
3.

Get the number of rows and the number of columns.
Get the number of nonzeros.

Read an entry of the matrix (e.g., const double x = A(2, 3);). If indices are out of bound,
then throw an error.

. Write an entry of the matrix (e.g., A(2, 3) = 5.7;). Ifindices are out of bound, then throw

an error. If indices are compatible with the matrix size but the entry has not been allocated
yet, either print an error or (bonus) allocate it.

. Given a vector 2 of compatible size, compute the matrix-vector product y = Azx.
. Print the matrix to the standard output, in a convenient, readable format.

. Implement other utilities you think are useful (if any).

719

Rules

e Use std::vector<type> or raw arrays to store data.
e Implement access and write matrix entries by overloading operator() .
e Implement the matrix-vector product by overloading operator* .

e You can use external resources for reference and learning, but acknowledge them in your
code.

e Use meaningful names that reflect the behavior of each function or variable.
e Ensure proper const and non- const overloads in member functions for const-correctness.

e 1 Penalties will be assigned if your interface does not properly satisfy const-
correctness.

e Tip: start from simple cases, generalize later.

8/9

Implementation and validation

1. Derive from the base class SparseMatrix to implement classes for both COO and CSR
storage schemes (e.g., SparseMatrixCo0 and SparseMatrixCSR).

2. Implement the operations defined above for both storage schemes.

3. Provide utility functions to convert a matrix from COQO format to CSR and vice versa.

4. Bonus: templatize your classes on the type of number stored by the matrix (e.g., int or
double).

The main.cpp file should include tests to validate the correctness of your program. Here are
some test ideas:

Ncols Ncols
e Ifv =1, then Mv Z M;v; = Z M;;, i.e., the sum of the ¢-th row.
j=1

e If v = €; (the i-th vector of the canonical basis), then M¢€; returns the -th column of M.

e Implement additional tests of your choice.

9/9

	Page 1
	Homework 01
	Implementation of a sparse matrix class
	Advanced Programming - SISSA, UniTS, 2025-2026
	Pasquale Claudio Africa, Giuseppe Alessio D'Inverno
	Due date: 09 Nov 2025

	Page 2
	What is a sparse matrix?

	Page 3
	Storage schemes

	Page 4
	Coordinate (COO) format

	Page 5
	Compressed Sparse Row (CSR) format

	Page 6
	Code organization
	Compilation

	Page 7
	Interface

	Page 8
	Rules

	Page 9
	Implementation and validation

