
Lecture 01

Introduction to the course. The UNIX shell. The build
process.

Advanced Programming - SISSA, UniTS, 2025-2026

Pasquale Claudio Africa

30 Sep 2025

1 / 78

About me
B.Sc. and M.Sc. in Mathematical Engineering, Politecnico di Milano, 2010-2015.

Ph.D. in Mathematical Models and Methods in Engineering, Politecnico di Milano, 2019.

Assistant Professor (RTDa) in Numerical Analysis at SISSA since March 2023.

Teaching experience
Advanced programming, numerical analysis, mathematical modeling and scientific computing.
Main languages: C++, MPI, OpenMP, Python, MATLAB/Octave.

Research interests
High-Performance Computing (HPC), mathematical models and computational methods to solve
problems in science and engineering, numerical methods for Partial Differential Equations (PDEs).

2 / 78

Course overview

3 / 78

Practical info
Instructor: Pasquale Claudio Africa pafrica@sissa.it

Tutor: Giuseppe Alessio D'Inverno gdinvern@sissa.it

Course material
GitHub : timetable, lecture notes and slides, exercise sessions.

Google Classroom : homeworks, exams. You are required to join. Please use your full
name (no nicknames allowed).

Other resources
Books (see course syllabus).

Internet (plenty of free or paid resources).

4 / 78

mailto:pafrica@sissa.it
mailto:gdinvern@sissa.it
https://github.com/pcafrica/advanced_programming_2025-2026
https://classroom.google.com/c/ODA4NDQ4MzcwMTQw?cjc=xjhuxupx
https://github.com/pcafrica/advanced_programming_2025-2026/blob/main/syllabus.md

Practical info
Lectures at SISSA. Check out GitHub regularly for up-to-date timetable, lecture topics, rooms,
and course material.

Course balance (approximate):

C++: 70%, Python: 30%.

Frontal lectures: 50%, live programming sessions: 50%.

For live programming sessions please bring your own laptop.

Questions?
Use Discussions on GitHub.

Engage with each other!

Office hours: send me or the tutor an email to book a session.

5 / 78

https://github.com/pcafrica/advanced_programming_2025-2026

Objectives and expectations
UNIX shell and the software build process.

Advanced programming concepts, specifically in C++ and Python.

Object-oriented and generic programming paradigms.

Common data structures, algorithms, libraries for scientific computing.

Software development tools in UNIX/Linux.

Required skills
Former knowledge of programming fundamentals (syntax, data types, variables, control
structures, functions).

Prior experience with C, C++, Java, or Python, is recommended, not mandatory.

6 / 78

Exams

1. (Optional) Homework assignments (up to 5 points):

Throughout the course, you will be assigned homework projects to complete either
individually or in groups. Detailed instructions will be uploaded.

2. Main exam (up to 27 points):

Theoretical questions (paper-based) and programming exercises (computer-based).

3. (Optional) Oral discussion, upon request (by either students or the instructor). It can
increase or decrease your grade by up to 3 points.

Maximum achievable grade: 30 + honors (granted in exceptional cases).

7 / 78

Some advice

1. Study day by day

Create a study schedule and set clear goals.

Prioritize consistency.

2. Practice regularly

Solve exercises on your own.

Programming is (mostly) learnt by doing, not by reading.

3. Interact

Engage in discussions on GitHub.

Seek help when needed.

Share your knowledge with others.

8 / 78

Laptop configuration
Please bring your own laptop with a working UNIX/Linux environment, whether standalone, dual
boot, or virtualized.

For beginners: https://ubuntu.com/tutorials/install-ubuntu-desktop .

You can write code using any text editor (such as Emacs, Vim, or Nano), or an Integrated
Development Environment (IDE) (such as VSCode, Eclipse, or Code::Blocks).

Requirements
C++ compiler with full support for C++17, such as GCC 10, or Clang 11.

Python 3. Jupyter is recommended, but not mandatory.

Any recent Linux distribution, such as Ubuntu 22.04, or Debian 11, or macOS system that
meets these requirements should be suitable for the course.

9 / 78

https://ubuntu.com/tutorials/install-ubuntu-desktop
https://docs.jupyter.org/en/latest/install/notebook-classic.html

Windows users
Windows Subsystem for Linux (WSL2) . Ubuntu version recommended, then follow Ubuntu-

specific instructions.

Virtual machine (such as VirtualBox).

(Expert users) Dual boot .

macOS users
Xcode : provides Clang.

Homebrew : provides GCC, Clang, Python 3.

Linux users
Install GCC and Python 3 using your package manager (such as apt, yum, pacman, ...).

10 / 78

https://learn.microsoft.com/en-us/windows/wsl/install
https://www.virtualbox.org/
https://www.xda-developers.com/dual-boot-windows-11-linux/
https://developer.apple.com/xcode/
https://brew.sh/

Why advanced programming skills matter
Tech evolves fast - skills must keep up.

Scalable, efficient software = industry edge.

Data rules decisions - coding powers it.

Top talent = top jobs + higher pay.

Hot careers:

Software Dev → Build the apps we use daily.

Systems Architect → Design the big picture.

Data Scientist/Engineer → Turn data into insight.

DevOps → Automate everything.

Cybersecurity → Defend digital frontiers.

R&D → Invent what's next.

11 / 78

Impact of advanced programming today
Data mastery → Big datasets, smart algorithms.

Integration & customization → Connect tools, tailor solutions.

Speed & performance → Optimize code, push limits.

AI & ML → Python leads, C++ boosts.

Visuals & prototyping → Clear insights, fast iterations.

Automation & scalability → Workflows on autopilot, built to grow.

Security & reliability → Safe, shareable, reproducible code.

12 / 78

Why should I learn programming in the AI era? (1/2)

1. Buggy code
Developers using AI assistants often produce less secure code.
Stanford Study (2023)

2. Outdated knowledge
AI models don't know the latest library/API changes by default.
(GPT-5 core training cutoff is 2024)

3. Hallucinated code
LLMs invent non-existent methods or libraries.
CodeMirage dataset

4. Security vulnerabilities
~40% of Copilot's code contains security flaws.
NYU Tandon Study

13 / 78

https://arxiv.org/abs/2211.03622
https://arxiv.org/abs/2408.08333
https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code-40-of-the-time/

Why should I learn programming in the AI era? (2/2)

5. Copyright & licensing risks
AI may reproduce GPL or proprietary code → legal conflicts.
Bloomberg Law Guidance

6. Debugging becomes harder
AI-generated black box code is tough to maintain.
Copilot User Study (2023)

7. Shallow learning
Students relying on AI acquire fewer problem-solving skills.
CS Education Study (2023)

8. Inconsistent standards
AI doesn't follow your project's architecture or style.
Coding Style Inconsistencies in LLMs

14 / 78

https://www.bloomberglaw.com/external/document/X4H9CFB4000000/copyrights-professional-perspective-ip-issues-with-ai-code-gener
https://arxiv.org/abs/2302.06590
https://doi.org/10.1186/s41239-023-00411-8
https://arxiv.org/abs/2407.00456

Welcome to the Advanced Programming course!

15 / 78

Outline
1. History of C++.

2. History of Python.

3. The build process.

4. Introduction to the UNIX shell.

5. Introduction to git .

16 / 78

History of C++

17 / 78

History of C++

Introduction
The history of the C++ programming language is a remarkable journey through the evolution of
computer science and software development. C++, often considered a superset of the C
programming language, was designed with the goal of combining the low-level power of C with
high-level features for structured programming. This chapter explores the origins, key milestones,
and influential figures that shaped C++ into the versatile and widely-used language it is today.

18 / 78

The birth of C++

Early roots: the C language
C++ owes its existence to the C programming language, which was developed at Bell Labs in the
early 1970s by Dennis Ritchie. C quickly gained popularity due to its efficiency, portability, and the
flexibility it offered to system programmers. Its simplicity, combined with powerful features for
memory manipulation, made it a go-to language for developing operating systems and other
system software.

19 / 78

The birth of C++

Bjarne Stroustrup's vision
The story of C++ begins in 1979 when Bjarne Stroustrup, a Danish computer scientist, started
working on what he initially called "C with Classes." Stroustrup, then at Bell Labs, aimed to
enhance C by adding support for object-oriented programming (OOP) concepts. His motivation
was to create a language that could address the growing complexity of software systems while
maintaining the performance and control of C.

20 / 78

The birth of C++

From C with classes to C++
Stroustrup's work on extending C led to the development of a preprocessor called "Cfront" in
1983. Cfront allowed C++ code to be translated into C code, which could then be compiled using
standard C compilers. This approach eased the transition to C++ for existing C programmers.

In 1983, the name "C++" was coined, signifying the evolution of C with Classes. The term "C++"
represents the incremental increase operator in C, suggesting that C++ is an improved version of
C. In 1985, Stroustrup published the first edition of "The C++ Programming Language," a seminal
book that introduced programmers to the language's concepts and features.

21 / 78

Early growth and ANSI C++ standardization
As C++ gained popularity, there was a need for standardization to ensure compatibility across
different compilers and platforms. In 1989, the American National Standards Institute (ANSI)
began working on a standard for the C++ language. This effort culminated in the release of the
ANSI C++ standard in 1998, which provided a formal specification of the language.

See https://isocpp.org/ for language references, guidelines, and much more.

22 / 78

https://isocpp.org/

Object-oriented paradigm
C++ introduced essential features of the OOP paradigm, including classes, objects, inheritance,
and polymorphism. These features allowed developers to build more modular and maintainable
software by encapsulating data and behavior within objects.

Generic programming
Another significant innovation in C++ was the introduction of templates. Templates allowed for
generic programming, enabling the creation of data structures and algorithms that could work with
different data types. Template metaprogramming, a technique that uses templates for compile-time
computations, further expanded C++'s capabilities.

23 / 78

C++ in the modern era

Standardization efforts
The C++ language has continued to evolve through a series of standards, each introducing new
features and improvements. Notable standards include C++98, C++11, C++14, C++17, C++20,
C++23 (C++26 expected soon). These standards have added features like smart pointers, lambda
expressions, range-based for loops, and modules, enhancing the language's expressiveness and
safety.

Open source and the C++ community
C++'s success can be attributed in part to the vibrant open-source community that has formed
around it. Open-source libraries and frameworks, such as the Boost C++ Libraries, have extended
C++'s functionality and encouraged collaborative development.

24 / 78

The future of C++
C++ has found applications in a wide range of fields, including game development, finance,
embedded systems, and scientific computing. Its combination of performance, portability, and
expressive power makes it a versatile choice for building software across various domains.

C++ continues to evolve, with ongoing work on future language standards. Features like concepts
(a type of compile-time constraint) and modules (for better code organization and encapsulation)
from C++20 are expected to play a significant role in shaping the language's future.

The history of C++ is a testament to the enduring power of a well-designed programming
language. From its humble beginnings as an extension of C to its status as a modern, versatile
language, C++ has left an indelible mark on the world of software development. Its rich history,
coupled with ongoing innovations, ensures that C++ will remain a vital tool for programmers for
years to come.

25 / 78

History of Python

26 / 78

History of Python

Introduction
Python is a versatile and widely-used programming language known for its simplicity, readability,
and the ease with which it allows developers to write clean and maintainable code. This chapter
delves into the rich history of Python, tracing its origins, key milestones, and the individuals who
played pivotal roles in its development.

27 / 78

The genesis of Python

Python's name and design philosophy
Python was created by Guido van Rossum, a Dutch programmer, in the late 1980s. Guido started
working on Python in December 1989 during his time at the Centrum Wiskunde & Informatica
(CWI) in the Netherlands. His motivation was to develop a language that combined the simplicity
of ABC (a programming language he had worked on previously) with the extensibility of the
Amoeba operating system.

Guido named the language after his love for the British comedy group Monty Python. Python's
design philosophy, often referred to as the "Zen of Python" emphasizes readability, simplicity, and
elegance. This philosophy is encapsulated in the PEP 20 document, which includes guiding
aphorisms like "Readability counts" and "There should be one - and preferably only one - obvious
way to do it".

28 / 78

https://peps.python.org/pep-0020/

Python's early years

Python 0.9.0
Python's first public release, Python 0.9.0, occurred in February 1991. This release introduced
essential features like exception handling, functions, and modules, which laid the foundation for
the language's future growth.

The Python Software Foundation
In 2001, the Python Software Foundation (PSF) was established as a non-profit organization to
promote and support Python. The PSF plays a crucial role in managing Python's development,
organizing conferences (e.g., PyCon), and providing grants and resources to the Python
community.

29 / 78

Python 2.x and 3.x

The transition to Python 3
Python 2.x and Python 3.x marked a significant phase in Python's history. Python 3, released in
December 2008, introduced backward-incompatible changes to address shortcomings in the
language. While Python 2 continued to be used for some time, the Python community has actively
encouraged the transition to Python 3.

30 / 78

Python's popularity and versatility
Python's readability, simplicity, and extensive standard library contributed to its widespread
adoption. It became a go-to language for web development, scientific computing, data analysis,
and automation. Popular web frameworks like Django and Flask further fueled Python's growth.

Python in Data science and Machine learning
Python gained prominence in data science and machine learning due to libraries like NumPy,
pandas, scikit-learn, and TensorFlow. Its ease of use and rich ecosystem made it a favorite among
data scientists and engineers.

Python in education
Python's readability and simplicity have made it an excellent choice for teaching programming. It is
widely used in educational settings to introduce programming concepts to beginners.

31 / 78

The future of Python
Python continues to evolve through a series of releases, with each version bringing new features
and enhancements. Python's community-driven development process ensures that the language
remains vibrant and relevant.

Python is well-positioned to thrive in emerging areas like artificial intelligence, web development,
and cloud computing. Its adaptability and large community ensure it can address a wide range of
challenges.

The history of Python is a testament to the enduring impact of a well-designed programming
language. From its inception in the late 1980s to its current status as a versatile and ubiquitous
language, Python has empowered developers to create a diverse array of software solutions. Its
readability, simplicity, and thriving community ensure that Python will remain a cornerstone of the
programming landscape for years to come.

32 / 78

Popularity of programming languages

Source: https://pypl.github.io/PYPL.html

33 / 78

https://pypl.github.io/PYPL.html

Curated lists of awesome C++ and Python frameworks,
libraries, resources, and shiny things.

awesome-cpp
awesome-python
awesome-scientific-python
awesome-scientific-computing

34 / 78

https://github.com/fffaraz/awesome-cpp
https://github.com/vinta/awesome-python
https://github.com/rossant/awesome-scientific-python
https://github.com/nschloe/awesome-scientific-computing

The build process:
Preprocessor, Compiler, Linker, Loader

35 / 78

Chapter overview
Understand the difference between compiled and interpreted languages.

Understand the build process.

Explore the roles of the preprocessor, compiler, linker, and loader.

36 / 78

Compiled language

Source file

Source file

Compiler

Compiler

Executable (Binary)

Executable (Binary)

Output

Output

Compile

Produces

Run

Interpreted language

Source file

Source file

Interpreter

Interpreter

Output

Output

Interpret

Produces

Compiled vs. interpreted languages

37 / 78

The build process
User Preprocessor Compiler Linker Executable Loader

Source file 1

Preprocess source file 1

Generate object file 1

Source file 2

Preprocess source file 2

Generate object file 2

...

Preprocess

Generate object file

Library 1

Library 2

...

Link object files

and libraries

Load (shared) libraries

Execute

38 / 78

Preprocessor
Handles directives and macros before compilation.

Originated for code reusability and organization.

Preprocessor directives

#include : Includes header files.

#define : Defines macros for code replacement.

#ifdef , #ifndef , #else , #endif : Conditional compilation.

#pragma : Compiler-specific directives.

Macros

Example: #define SQUARE(x) ((x) * (x))

Usage: int result = SQUARE(5); // Expands to: ((5) * (5))

39 / 78

Compiler
Translates source code into assembly/machine code.

Evolved with programming languages and instructions.

Compilation process

1. Lexical analysis: Tokenization.

2. Syntax analysis (parsing): Syntax tree.

3. Semantic analysis: Checking.

4. Code generation: Assembly/machine code.

5. Optimization: Efficiency improvement.

6. Output: Object files. Example: g++ main.cpp -o main.o

Common compiler options

-O : Optimization levels; -g : Debugging info; -std : C++ standard.
40 / 78

Linker
Combines object files into an executable.

Supports modular code.

Linking process

1. Symbol resolution: Match symbols.

2. Relocation: Adjust addresses.

3. Output: Executable.

4. Linker errors/warnings.

5. Example: g++ main.o helper.o -o my_program

Static vs. dynamic linking

Static: Larger binary, library inclusion.

Dynamic: Smaller binary, runtime library reference.
41 / 78

Loader
Loads executables for execution.

Tied to memory management evolution.

Loading process

1. Memory allocation: Reserve memory.

2. Relocation: Adjust addresses.

3. Initialization: Set up environment.

4. Execution: Start execution.

Dynamic linking at runtime

Inclusion of external libraries during execution.

Enhances flexibility.

42 / 78

Introduction to the UNIX shell

43 / 78

What is a shell?
From http://www.linfo.org/shell.html :

A shell is a program that provides the
traditional, text-only user interface for
Linux and other UNIX-like operating
systems. Its primary function is to read
commands that are typed into a console
[...] and then execute (i.e., run) them. The
term shell derives its name from the fact
that it is an outer layer of an operating
system. A shell is an interface between
the user and the internal parts of the OS
(at the very core of which is the kernel).

44 / 78

http://www.linfo.org/shell.html

What shells are available?
Bash stands for: Bourne Again Shell , a homage to its creator Stephen Bourne. It is the default

shell for most UNIX systems and Linux distributions. It is both a command interpreter and a
scripting language. The shell might be changed by simply typing its name and even the default
shell might be changed for all sessions.

macOS has replaced it with zsh , which is mostly compatible with Bash , since v10.15 Catalina.

Other shells available: tsh, ksh, csh, Dash, Fish, Windows PowerShell, ...

45 / 78

https://support.apple.com/en-us/HT208050

Variables and environmental variables
As shell is a program, it has its variables. You can assign a value to a variable with the equal sign
(no spaces!), for instance type A=1 . You can then retrieve its value using the dollar sign and
curly braces, for instance to display it the user may type echo ${A} . Some variables can affect
the way running processes will behave on a computer, these are called environmental variables.
For this reason, some variables are set by default, for instance to display the user home directory
type echo ${HOME} . To set an environmental variable just prepend export , for instance
export PATH="/usr/sbin:$PATH" adds the folder /usr/sbin to the PATH environment variable.
PATH specifies a set of directories where executable programs are located.

46 / 78

Types of shell (login vs. non-login)
A login shell logs you into the system as a specific user (it requires username and password).
When you hit Ctrl+Alt+F1 to login into a virtual terminal you get after successful login: a
login shell (that is interactive).

A non-login shell is executed without logging in (it requires a current logged in user). When
you open a graphic terminal it is a non-login (interactive) shell.

47 / 78

Types of shell (interactive vs. non-interactive)
In an interactive shell (login or non-login) you can interactively type or interrupt commands.
For example a graphic terminal (non-login) or a virtual terminal (login). In an interactive shell
the prompt variable must be set ($PS1).

A non-interactive shell is usually run from an automated process. Input and output are not
exposed (unless explicitly handled by the calling process). This is normally a non-login shell,
because the calling user has logged in already. A shell running a script is always a non-
interactive shell (but the script can emulate an interactive shell by prompting the user to input
values).

48 / 78

The shell as a command line interpreter
When launching a terminal a UNIX system first launches the shell interpreter specified in the
SHELL environment variable. If SHELL is unset it uses the system default.

After having sourced the initialization files, the interpreter shows the prompt (defined by the
environment variable $PS1).

Initialization files are hidden files stored in the user's home directory, executed as soon as an
interactive shell is run.

49 / 78

Initialization files
Initialization files in a shell are scripts or configuration files that are executed or sourced when the
shell starts. These files are used to set up the shell environment, customize its behavior, and
define various settings that affect how the shell operates.

login:

/etc/profile , /etc/profile.d/* , ~/.profile for Bourne-compatible shells

~/.bash_profile (or ~/.bash_login) for Bash

/etc/zprofile , ~/.zprofile for zsh

/etc/csh.login , ~/.login for csh

non-login: /etc/bash.bashrc , ~/.bashrc for Bash

50 / 78

Initialization files

interactive:

/etc/profile , /etc/profile.d/* and ~/.profile

/etc/bash.bashrc , ~/.bashrc for Bash

non-interactive:

/etc/bash.bashrc for Bash (but most of the times the script begins with: [-z
"$PS1"] && return , i.e. don't do anything if it's a non-interactive shell).

depending on the shell, the file specified in $ENV (or $BASH_ENV) might be read.

51 / 78

Getting started
To get a little hang of the shell, let’s try a few simple commands:

echo : prints whatever you type at the shell prompt.

date : displays the current time and date.

clear : clean the terminal.

52 / 78

Basic shell commands (1/2)
pwd stands for Print working directory and it points to the current working directory, that is,

the directory that the shell is currently looking at. It’s also the default place where the shell
commands will look for data files.

ls stands for a List and it lists the contents of a directory. ls usually starts out looking at our
home directory. This means if we print ls by itself, it will always print the contents of the
current directory.

cd stands for Change directory and changes the active directory to the path specified.

53 / 78

Basic shell commands (2/2)
cp stands for Copy and it copies one or more files or directories, keeping the originals

unaltered. We need to specify what we want to copy, i.e., the source and where we want to
copy them, i.e., the destination.

mv stands for Move and it moves one or more files or directories from one place to another.
We need to specify what we want to move, i.e., the source and where we want to move them,
i.e., the destination.

touch command is used to create new, empty files. It is also used to change the timestamps
on existing files and directories.

mkdir stands for Make directory and is used to make a new directory or a folder.

rm stands for Remove and it removes files or directories. By default, it does not remove
directories, unless you provide the flag rm -r (-r means recursively).

 Warning: Files removed via rm are lost forever, please be careful!

54 / 78

Shell scripts
Commands can be written in a script file, i.e. a text file that can be executed.

Remember that the first line of the script (the so-called shebang) tells the shell which interpreter
to use while executing the file. So, for example, if your script starts with #!/bin/bash it will be run
by Bash , if is starts with #!/usr/bin/env python it will be run by Python .

To run your brand new script you may need to change the access permissions of the file. To make
a file executable run

chmod +x script_file

55 / 78

Not all commands are equals
When executing a command, like ls a subprocess is created. A subprocess inherits all the
environment variables from the parent process, executes the command and returns the control to
the calling process.

A subprocess cannot change the state of the calling process.

The command source script_file executes the commands contained in script_file as if
they were typed directly on the terminal. It is only used on scripts that have to change some
environmental variables or define aliases or function. Typing . script_file does the same.

If the environment should not be altered, use ./script_file , instead.

56 / 78

Built-in commands
Some commands, like cd are executed directly by the shell, without creating a subprocess.

Indeed it would be impossible to have cd as a regular command!

The reason is: a subprocess cannot change the state of the calling process, whereas cd needs
to change the value of the environmental variable PWD (that contains the name of the current
working directory).

57 / 78

Other commands
In general a command can refer to:

A builtin command.

An executable.

A function.

The shell looks for executables with a given name within directories specified in the environment
variable PATH , whereas aliases and functions are usually sourced by the .bashrc file (or
equivalent).

To check what command_name is: type command_name .

To check its location: which command_name .

58 / 78

A warning about filenames
 In order to live happily and without worries, don't use spaces nor accented characters in

filenames!

Space characters in file names should be forbidden by law! The space is used as separation
character, having it in a file name makes things a lot more complicated in any script (not just shell
scripts).

Use underscores (snake case): my_wonderful_file_name , or uppercase characters (camel
case): myWonderfulFileName , or hyphens: my-wonderful-file-name , or a mixture:
myWonderful_file-name , instead.

But not my wonderful file name . It is not wonderful at all if it has to be parsed in a script.

59 / 78

Functions
A function in a shell is a block of reusable code that you can define and call throughout your
script. Functions are useful for organizing complex scripts and avoiding repetition. The general
syntax for defining a function is:

function_name() {
 # Commands to be executed.
}

Example:

greet() {
 echo "Hello, $1!"
}

In this example, greet is a function that takes one argument and echoes a greeting message.

60 / 78

Input arguments in a script or in a function
$0 : The name of the script/function itself.

$1 , $2 , $3 , etc.: The first, second, third (and so on) argument passed to the
script/function.

$# : The number of arguments passed.

$@ : The list of all the arguments passed as a single string.

$* : All the arguments as a single word (not often used).

61 / 78

More commands
cat stands for Concatenate and it reads a file and outputs its content. It can read any

number of files, and hence the name concatenate.

wc is short for Word count. It reads a list of files and generates one or more of the following
statistics: newline count, word count, and byte count.

grep stands for Global regular expression print. It searches for lines with a given string or
looks for a pattern in a given input stream.

head shows the first line(s) of a file.

tail shows the last line(s) of a file.

file reads the files specified and performs a series of tests in attempt to classify them by
type.

62 / 78

Redirection, pipelines and filters
We can add operators between commands in order to chain them together.

The pipe operator | , forwards the output of one command to another. E.g., cat
/etc/passwd | grep my_username checks system information about "my_username".

The redirect operator > sends the standard output of one command to a file. E.g., ls >
files-in-this-folder.txt saves a file with the list of files.

The append operator >> appends the output of one command to a file.

The operator &> sends the standard output and the standard error to file.

&& pipe is activated only if the return status of the first command is 0. It is used to chain
commands together: e.g., sudo apt update && sudo apt upgrade

|| pipe is activated only if the return status of first command is different from 0.

; is a way to execute to commands regardless of the output status.

$? is a variable containing the output status of the last command.
63 / 78

Advanced commands (1/3)
tr stands for translate. It supports a range of transformations including uppercase to

lowercase, squeezing repeating characters, deleting specific characters, and basic find and
replace. For instance:

echo "Welcome to Advanced Programming!" | tr [a-z] [A-Z] converts all characters
to upper case.

echo -e "A;B;c\n1,2;1,4;1,8" | tr "," "." | tr ";" "," replaces commas with
dots and semi-colons with commas.

echo "My ID is 73535" | tr -d [:digit:] deletes all the digits from the string.

64 / 78

Advanced commands (2/3)
sed stands for stream editor and it can perform lots of functions on file like searching, find

and replace, insertion or deletion. We give just an hint of its true power
echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/" replaces

the first occurrence of "UNIX" with "Linux".

echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/2" replaces
the second occurrence of "UNIX" with "Linux".

echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/g" replaces
all occurrencies of "UNIX" with "Linux".

echo -e "ABC\nabc" | sed "/abc/d" delete lines matching "abc".

echo -e "1\n2\n3\n4\n5\n6\n7\n8" | sed "3,6d" delete lines from 3 to 6.

65 / 78

Advanced commands (3/3)
cut is a command for cutting out the sections from each line of files and writing the result to

standard output.
cut -b 1-3,7- state.txt cut bytes (-b) from 1 to 3 and from 7 to end of the line

echo -e "A,B,C\n1.22,1.2,3\n5,6,7\n9.99999,0,0" | cut -d "," -f 1 get the first
column of a CSV (-d specifies the column delimiter, -f n specifies to pick the -th
column from each line)

find is used to find files in specified directories that meet certain conditions. For example:
find . -type d -name "*lib*" find all directories (not files) starting from the current one

(.) whose name contain "lib".

locate is less powerful than find but much faster since it relies on a database that is
updated on a daily base or manually using the command updatedb . For example: locate -
i foo finds all files or directories whose name contains foo ignoring case.

66 / 78

Quotes
Double quotes may be used to identify a string where the variables are interpreted. Single quotes
identify a string where variables are not interpreted. Check the output of the following commands

a=yes
echo "$a"
echo '$a'

The output of a command can be converted into a string and assigned to a variable for later reuse:

list=`ls -l` # Or, equivalently:
list=$(ls -l)

67 / 78

Processes
Run a command in background: ./my_command &

Ctrl-Z suspends the current subprocess.

jobs lists all subprocesses running in the background in the terminal.

bg %n reactivates the -th subprocess and sends it to the background.

fg %n brings the -th subprocess back to the foreground.

Ctrl-C terminates the subprocess in the foreground (when not trapped).

kill pid sends termination signal to the subprocess with id pid . You can get a list of the
most computationally expensive processes with top and a complete list with ps aux
(usually ps aux is filtered through a pipe with grep)

All subprocesses in the background of the terminal are terminated when the terminal is closed
(unless launched with nohup , but that is another story...)

68 / 78

How to get help
Most commands provide a -h or --help flag to print a short help information:

find -h

man command prints the documentation manual for command.

There is also an info facility that sometimes provides more information: info command .

69 / 78

Introduction to git

70 / 78

Version control
Version control, also known as source control, is the practice of tracking and managing changes to
software code. Version control systems are software tools that help software teams manage
changes to source code over time.

git is a free and open-source version control system, originally created by Linus Torvalds in
2005. Unlike older centralized version control systems such as SVN and CVS, Git is distributed:
every developer has the full history of their code repository locally. This makes the initial clone of
the repository slower, but subsequent operations dramatically faster.

A visual git cheat sheet .

71 / 78

https://ndpsoftware.com/git-cheatsheet.html

How does git work?
1. Create (or find) a repository with a git hosting

tool (an online platform that hosts you project,
like GitHub or Gitlab).

2. git clone (download) the repository.

3. git add a file to your local repo.

4. git commit (save) the changes, this is a local
action, the remote repository (the one in the
cloud) is still unchanged.

5. git push your changes, this action
synchronizes your version with the one in the
hosting platform.

72 / 78

https://github.com/
https://gitlab.com/

How does git works? (Collaborative)
If you and your teammates work on different files the workflow is the same as before, you just
have to remember to pull the changes that your colleagues made.

If you have to work on the same files, the best practice is to create a new branch , which is a
particular version of the code that branches form the main one. After you have finished working on
your feature you merge the branch into the main.

main

person1

person2

0-2
aa
e4
13

1-e
84
7e
72

2-a
f72
27
c

3-e
a5
fd9
e

4-4
e1
e6
f1

6-2
da
7fd
9

7-c
fcc
5e
9

9-0
faf
5b
d

10
-9a
8b
ff4

73 / 78

Other useful git commands
git diff shows the differences between your code and the last commit.

git status lists the status of all the files (e.g. which files have been changed, which are
new, which are deleted and which have been added).

git log shows the history of commits.

git checkout switches to a specific commit or brach.

git stash temporarily hides all the modified tracked files.

74 / 78

SSH authentication
1. Sign up for a GitHub account.

2. Create a SSH key .

3. Add it to your account .

4. Configure your machine:

git config --global user.name "Name Surname"
git config --global user.email "name.surname@email.com"

See here for more details on SSH authentication.

75 / 78

https://github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process

The course repository
Clone the course repository:

git clone git@github.com:pcafrica/advanced_programming_2025-2026.git

Before every lecture, download the latest updates by running:

git pull origin main

from inside the cloned folder.

76 / 78

 Warning
Please get your laptop ready by tomorrow!

77 / 78

 Have a great semester!

78 / 78

	Page 1
	Lecture 01
	Introduction to the course. The UNIX shell. The build process.
	Advanced Programming - SISSA, UniTS, 2025-2026
	Pasquale Claudio Africa
	30 Sep 2025

	Page 2
	About me
	Teaching experience
	Research interests

	Page 3
	Course overview

	Page 4
	Practical info
	Course material
	Other resources

	Page 5
	Practical info
	Questions?

	Page 6
	Objectives and expectations
	Required skills

	Page 7
	Exams

	Page 8
	Some advice

	Page 9
	Laptop configuration
	Requirements

	Page 10
	Windows users
	macOS users
	Linux users

	Page 11
	Why advanced programming skills matter

	Page 12
	Impact of advanced programming today

	Page 13
	Why should I learn programming in the AI era? (1/2)

	Page 14
	Why should I learn programming in the AI era? (2/2)

	Page 15
	Welcome to the Advanced Programming course!

	Page 16
	Outline

	Page 17
	History of C++

	Page 18
	History of C++
	Introduction

	Page 19
	The birth of C++
	Early roots: the C language

	Page 20
	The birth of C++
	Bjarne Stroustrup's vision

	Page 21
	The birth of C++
	From C with classes to C++

	Page 22
	Early growth and ANSI C++ standardization

	Page 23
	Object-oriented paradigm
	Generic programming

	Page 24
	C++ in the modern era
	Standardization efforts
	Open source and the C++ community

	Page 25
	The future of C++

	Page 26
	History of Python

	Page 27
	History of Python
	Introduction

	Page 28
	The genesis of Python
	Python's name and design philosophy

	Page 29
	Python's early years
	Python 0.9.0
	The Python Software Foundation

	Page 30
	Python 2.x and 3.x
	The transition to Python 3

	Page 31
	Python's popularity and versatility
	Python in Data science and Machine learning
	Python in education

	Page 32
	The future of Python

	Page 33
	Popularity of programming languages

	Page 34
	Curated lists of awesome C++ and Python frameworks, libraries, resources, and shiny things.
	awesome-cpp
	awesome-python
	awesome-scientific-python
	awesome-scientific-computing

	Page 35
	The build process: Preprocessor, Compiler, Linker, Loader

	Page 36
	Chapter overview

	Page 37
	Compiled vs. interpreted languages

	Page 38
	The build process

	Page 39
	Preprocessor
	Preprocessor directives
	Macros

	Page 40
	Compiler
	Compilation process
	Common compiler options

	Page 41
	Linker
	Linking process
	Static vs. dynamic linking

	Page 42
	Loader
	Loading process
	Dynamic linking at runtime

	Page 43
	Introduction to the UNIX shell

	Page 44
	What is a shell?

	Page 45
	What shells are available?

	Page 46
	Variables and environmental variables

	Page 47
	Types of shell (login vs. non-login)

	Page 48
	Types of shell (interactive vs. non-interactive)

	Page 49
	The shell as a command line interpreter

	Page 50
	Initialization files

	Page 51
	Initialization files

	Page 52
	Getting started

	Page 53
	Basic shell commands (1/2)

	Page 54
	Basic shell commands (2/2)

	Page 55
	Shell scripts

	Page 56
	Not all commands are equals

	Page 57
	Built-in commands

	Page 58
	Other commands

	Page 59
	A warning about filenames

	Page 60
	Functions

	Page 61
	Input arguments in a script or in a function

	Page 62
	More commands

	Page 63
	Redirection, pipelines and filters

	Page 64
	Advanced commands (1/3)

	Page 65
	Advanced commands (2/3)

	Page 66
	Advanced commands (3/3)

	Page 67
	Quotes

	Page 68
	Processes

	Page 69
	How to get help

	Page 70
	Introduction to git

	Page 71
	Version control

	Page 72
	How does git work?

	Page 73
	How does git works? (Collaborative)

	Page 74
	Other useful git commands

	Page 75
	SSH authentication

	Page 76
	The course repository

	Page 77
	⚠️ Warning Please get your laptop ready by tomorrow!

	Page 78
	🎉 Have a great semester!

