
Lecture 02

Introduction to C++. Built-in data types. Variables, pointers
and references. Control structures. Functions.

Advanced Programming - SISSA, UniTS, 2025-2026

Giuseppe Alessio D'Inverno

07 Oct 2025

1 / 70

Why C++?
C++ is:

Reasonably efficient in terms of CPU time and memory handling, being a compiled
language.

High demand in industry.

A (sometimes exceedingly) complex language: if you know C++ you will learn other
languages quickly.

A strongly typed language: safer code, less ambiguous semantic, more efficient memory
handling.

Supporting functional, object-oriented, and generic programming.

Backward compatible (unlike Python...). Old code compiles (almost) seamlessly.

 It is green !

 Not everybody agrees on the definition of strongly typed.
2 / 70

https://medium.com/codex/what-are-the-greenest-programming-languages-e738774b1957

Outline
1. Structure of a basic C++ program

2. Fundamental types

3. Memory management: variables, pointers, references, arrays

4. Conditional statements and control structures

5. Functions and operators

6. User-defined types: enum , union , struct , POD structs

7. Declarations and definitions

8. Code organization

9. The build toolchain in practice

3 / 70

Structure of a basic C++ program

4 / 70

Structure of a basic C++ program
C++ program structure includes a collection of functions.

Every C++ program must contain one main() function, which serves as the entry point.

Other functions can be defined as needed.

Statements within functions are enclosed in curly braces {} .

Statements are executed sequentially unless control structures (e.g., loops, conditionals) are
used.

5 / 70

Hello, world!
#include <iostream>

int main() { // Or, more completely: int main(int argc, char** argv, char** envp)
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

#include <iostream> : Includes the Input/Output stream library.

int main() : Entry point of the program.

std::cout : Standard output stream.

<< : Stream insertion operator.

"Hello, world!" : Text to be printed.

<< std::endl : Newline character.

return 0; : Indicates successful program execution.

6 / 70

How to compile and run
To compile the program:

g++ hello_world.cpp -o hello_world

To run the compiled program:

./hello_world [arg1] [arg2] ... [argN]

To check exit code:

echo $?

7 / 70

C++ as a strongly typed language
C++ enforces strict type checking at compile time.

Variables must be declared with a specific type.

Type errors are detected and reported at compile time.

This helps prevent runtime errors and enhances code reliability.

Example

int x = 5;
char ch = 'A';
float f = 3.14;

x = 1.6; // Legal, but truncated to the 'int' 1.
f = "a string"; // Illegal.

unsigned int y{3.0}; // Uniform initialization (since C++11): illegal.

8 / 70

Fundamental types

9 / 70

Fundamental types
Data Type Size (Bytes)

bool 1

(unsigned) char 1

(unsigned) short 2

(unsigned) int 4

(unsigned) long 4 or 8

(unsigned) long long 8

float 4

double 8

long double 8, 12, or 16

10 / 70

Integer numbers
C++ provides several integer types with varying sizes.

Common integer types include int , short , long , and long long .

The range of values that can be stored depends on the type.

Example

int age = 30;

short population = 32000;

long long large_number = 123456789012345;

11 / 70

Floating-point numbers
C++ supports floating-point types for representing real numbers.

Common floating-point types include float , double , and long double .

These types can represent decimal fractions.

Example

float pi = 3.14;

double gravity = 9.81;

12 / 70

Floating-point arithmetic
Floating-point arithmetic is a method for representing and performing operations on real numbers

 in a binary format (i.e.,).

Representation: Floating-point numbers consist of three components: sign (0: positive, 1:
negative), significand , and exponent .

Normalized numbers: In normalized form, the most significant bit of the significand is always
1, allowing for a wide range of values to be represented efficiently.

IEEE 754 standard: The most commonly adopted standard for floating-point arithmetic is the
IEEE 754 Standard for Floating-Point Arithmetic . This standard specifies the formats,

precision, rounding rules, and handling of special values like NaN (Not-a-Number) and infinity.

13 / 70

https://ieeexplore.ieee.org/document/8766229

Floating-point arithmetic limitations
double epsilon = 1.0; // Machine epsilon.

while (1.0 + epsilon != 1.0) {
 epsilon /= 2.0;
}

double a = 0.1, b = 0.2, c = 0.3;

if (a + b == c) { // Unsafe comparison.
 // This may not always be true due to precision limitations.
}

double x = 1.0, y = 1.0 / 3.0; double sum = y + y + y;

if (std::abs(x - sum) < tolerance) { // Safer comparison.
 // Use tolerance to handle potential rounding errors.
}

14 / 70

Characters and strings
Characters are represented using the char type.

Strings are sequences of characters and are represented using the std::string type.

Example

char comma = ',';

std::string name = "John";

std::string greeting = "Hello";

// Concatenate strings.
std::string message = greeting + comma + ' ' + name;

15 / 70

Boolean types
C++ has a built-in Boolean type called bool .

It can have two values: true or false .

Useful for conditional statements and logical operations.

Numbers can be converted to Boolean.

Example

bool is_true = true;

bool is_false = false;

if (-1.5) // true.
 // ...

if (0) // false.
 // ...

16 / 70

Initialization and aliases
Initialization sets the initial value of a variable at the time of declaration.

C++ supports various forms of initialization, including direct, copy, and list initialization.

Example

int x = 5; // Direct initialization.
int y(10); // Constructor-style initialization.
int z{15}; // Uniform initialization (since C++11; preferred).

Aliases enable to create new types based on already defined others.

Example

using number = double;
using int_array = int*;

17 / 70

auto and type conversions.
In many situations, the compiler can determine the correct type of an object using the initialization
value.

auto a{42}; // int.
auto b{12L}; // long.
auto c{5.0F}; // float.
auto d{10.0}; // double.
auto e{false}; // bool.
auto f{"string"}; // char[7].

// C++11.
auto fun1(const int i) -> int { return 2 * i; }

// C++14.
auto fun2(const int i) { return 2 * i; }

In reality, things are much more complex: see, for instance, Explicit type conversion and
related pages.

18 / 70

https://en.cppreference.com/w/cpp/language/explicit_cast

Memory management: variables, pointers,
references, arrays

19 / 70

Heap vs. stack
Programs use memory to store data and variables.

Stack memory
Stack: A region of memory for function call frames.

Variables stored on the stack have a fixed size and scope.

Memory is allocated and deallocated automatically.

Well-suited for small, short-lived variables.

Heap memory
Heap: A region of dynamic memory for data with varying lifetimes.

Variables on the heap have a dynamic size and longer lifetimes.

Memory allocation and deallocation are explicit (manual).

Used for objects with unknown or extended lifetimes.
20 / 70

Variables and pointers
Variables stored on the stack are typically accessed directly.

Pointers to stack variables can be used safely within their scope.

Heap-allocated variables require pointers for access.

Pointers to heap variables must be managed carefully.

int stack_var = 42; // Stack variable.
int* stack_ptr = &stack_var; // Pointer to stack variable.

int* heap_ptr = new int(42); // Pointer to heap variable.
// ...
delete heap_ptr;
heap_ptr = nullptr;

21 / 70

Lifetime and scope
Stack variables have a limited lifetime within their scope.

Heap variables can have a longer lifetime beyond their defining scope.

Deallocating heap memory is the programmer's responsibility.

Best practices
Use the stack for small, short-lived variables.

Use the heap for dynamic data with extended lifetimes.

Always deallocate heap memory to prevent memory leaks.

22 / 70

Variables
Variables are named memory locations used to store data.

They must be declared with a specific type before use.

Variables can be modified and accessed in your program.

Example

int x = 5; // Declaration and initialization.
x = 10; // Variable modification.

int y; // Declaration with default initialization.
y = 20; // Initialization after declaration.

const double a = 3.7;
a = 5; // Error!

23 / 70

Pointers
Pointers are variables that store memory addresses.

They allow you to work with memory directly.

Declared using * symbol.

Example

int number = 42;

int* pointer = &number; // Pointer to 'number'.

// Create a dynamic integer with new.
int* dynamic_variable = new int;
*dynamic_variable = 5;

// Deallocate it.
delete dynamic_variable;
dynamic_variable = nullptr;

24 / 70

Pointers: common problems
int* arr = new int[5]; // Dynamically allocate an integer array.

// Access and use the array beyond its allocated size.
for (int i = 0; i <= 5; ++i) {
 arr[i] = i;
}

// Forgot to delete the dynamically allocated array, causing a memory leak.
// delete[] arr;

// Attempt to access memory beyond the allocated array's bounds, causing undefined behavior.
std::cout << arr[10] << std::endl;

25 / 70

References
References provide an alias for an existing variable.

Declared using & symbol.

Provide an alternative way to access a variable.

Example

int a = 10;
int& ref = a; // Reference to 'a'.

ref = 20; // Modifies 'a'.

int b = 10;
ref = b;
ref = 5; // What's now the value of 'a' and 'b'?

26 / 70

Arrays
Arrays are collections of elements of the same type.

Elements are accessed by their index (position).

C++ provides the much safer std::array<type> , std::vector<type> (to be covered in a
sequent lecture).

Example

int numbers[5]; // Array declaration.
numbers[0] = 1; // Assigning values to elements.

int* dynamic_array = new int[5];

for (int i = 0; i < 5; ++i) {
 dynamic_array[i] = 2 * i;
}

delete[] dynamic_array;

27 / 70

Conditional statements and control structures

28 / 70

if ... else if ... else
Conditional statements allow you to execute different code based on conditions.

In C++, we use if , else if , and else statements for conditional execution.

Example

int x = 10;

if (x > 5) {
 std::cout << "x is greater than 5." << std::endl;
} else if (x > 3) {
 std::cout << "x is greater than 3 but not greater than 5." << std::endl;
} else {
 std::cout << "x is not greater than 5." << std::endl;
}

29 / 70

switch ... case
The switch statement is a control flow structure alternative to using multiple if ... else
statements based on the value of an expression.

Example

switch (expression) {
 case constant1:
 // Code to execute if expression == constant1.
 break;
 case constant2:
 // Code to execute if expression == constant2.
 break;
 // ... more cases ...
 default:
 // Code to execute if expression doesn't match any case.
}

30 / 70

for loop
A for loop is used to execute a block of code a specific number of times. It is often used
when the number of iterations is known beforehand.

for (initialization; condition; post-iteration operation) {
 // Code to execute in each iteration.
}

Example

for (int i = 0; i < 5; ++i) {
 std::cout << "Iteration: " << i << std::endl;
}

NB: i is usually named counter . A more general concept, called iterator will provide a
generalization for custom objects.

31 / 70

while loop
A while loop is used to repeat a block of code as long as the specified condition remains
true . It is useful when the number of iterations is not predetermined.

while (condition) {
 // Code to execute while the condition is true.
}

Example

int i = 0;
while (i < 5) {
 std::cout << "Iteration: " << i << std::endl;
 ++i;
}

NB: A do { ... } while(...) loop is similar to a while loop but guarantees that the block of
code will be executed at least once, as the condition is checked after the loop body.

32 / 70

Functions and operators

33 / 70

Functions
Functions are blocks of code that perform a specific task.

Functions are defined with a return type, name, and parameters.

They can be called to execute their code.

Example

int add(int a, int b) {
 return a + b;
}

int result = add(3, 4); // Calling the 'add' function.

34 / 70

void
void is a data type that represents the absence of a specific type.

It indicates that a function does not return any value or that a pointer does not have a defined
type.

Dangerous to use.

Example

void greet() {
 std::cout << "Hello, world!" << std::endl;
}

void* generic_ptr;
int x = 10;

generic_ptr = &x; // Can point to any data type.

35 / 70

Pass by value vs. pointer vs. reference (1/2)
void modify_by_copy(int x) {
 // Creates a copy of 'x' inside the function.
 x = 20; // Changes the copy 'x', not the original value.
}

void modify_by_ptr(int* ptr) {
 *ptr = 30; // Modifies the original value via the pointer.
}

void modify_by_ref(int& ref) {
 ref = 40; // Modifies the original value through the reference.
}

36 / 70

Pass by value vs. pointer vs. reference (2/2)
int value = 10;

modify_by_copy(value); // Pass by value.
std::cout << value << std::endl; // Output: 10.

modify_by_ptr(&value); // Pass by pointer
std::cout << value << std::endl; // Output: 30.

modify_by_ref(value); // Pass by reference
std::cout << value << std::endl; // Output: 40.

Best practices
Pass by value for small, non-mutable data.

Pass by pointer for modifying values or working with arrays.

Pass by reference for efficiency and direct modification of values.

37 / 70

Return by value vs. pointer vs. reference (1/2)
int get_copy() {
 return 42; // Return a copy of the value.
}

int* get_ptr() {
 int* arr = new int[5];
 // ...
 return arr; // Return a pointer to the array.
}

int& get_ref() {
 static int value = 10; // static means that the variable persists
 // through multiple calls to this function.
 // Beware: if not static, undefined behavior
 // (value gets destroyed).
 return value; // Return a reference to 'value'.
}

38 / 70

Return by value vs. pointer vs. reference (2/2)
int result1 = get_copy(); // Return by value.

int* result2 = get_ptr(); // Return by pointer.
result2[2] = 5;
delete[] result2; // Beware: memory leaks.

int& result3 = get_ref(); // Return by reference.
result3 = 20;

Best practices
Return by value for small, non-mutable data.

Return by pointer for dynamically allocated data.

Return by reference for efficiency and direct modification of data.

39 / 70

const correctness (1/2)

void print_value(const int x) {
 // x = 42; // Error: Cannot modify 'x'.
}

const int get_copy() {
 const int x = 42;
 return x;
}

int result = get_copy();
result = 10; // Safe, it's a copy!

const int age = 30; // Immutable variable.
const int* ptr_to_const = &age; // Pointer to an integer which is constant.

ptr_to_const = &result; // Now pointing to another variable.
*ptr_to_const = 42; // Error: cannot modify pointed object.

Question: how to declare a constant pointer to a non-constant int ?

40 / 70

const correctness (2/2)

Benefits
Prevents unintended modifications: Helps avoid accidental data modifications, enhancing
code safety.

Self-documenting code: Makes code more self-documenting by indicating the intent of data
usage.

Compiler optimizations: Allows the compiler to perform certain optimizations, as it knows that
const data won't change.

Best practices
Const correctness is a valuable practice for writing safe and maintainable C++ code.

Use const to indicate read-only data and functions.

Incorrectly using const can lead to compiler errors or unexpected behavior.
41 / 70

Operators
Operators are symbols used to perform operations on variables and values.

Arithmetic operators: + , - , * , / , %

Arithmetic and assignment operators: += , -= , *= , /= , %=

Comparison operators: == , != , < , > , <= , >= , <=> (C++20)

Logical operators: && , || , !

Example

int x = 5, y = 3;
bool is_true = (x > y) && (x != 0); // Logical expression.
int z = (x > y) ? 2 : 1; // Ternary operator.

x += 2; // 7.
y *= 4; // 12.
z /= 2; // 1.

42 / 70

Increment operators

1. Pre-increment (++var):

Increases the variable's value before using it.

The updated value is immediately reflected. No temporary needed: more efficient.

2. Post-increment (var++):

Uses the current value of the variable before incrementing.

The variable's value is increased after its current value is used.

int a = 5;
int b = ++a; // Pre-increment.
// a is now 6, b is also 6.

int c = a++; // Post-increment.
// a is now 7, but c is 6.

43 / 70

Function overloading
Function overloading is a feature in C++ that allows you to define multiple functions with the
same name but different parameters.

The compiler selects the appropriate function based on the number or types of arguments
during the function call.

void print(int x) {
 std::cout << "Integer value: " << x << std::endl;
}

void print(double x) {
 std::cout << "Double value: " << x << std::endl;
}

print(3); // Calls the int version.
print(2.5); // Calls the double version.

44 / 70

User-defined types

45 / 70

enum
Enumerations (enums) allow you to define a set of named values.

Enums provide a way to create user-defined data types.

Example

enum Color : unsigned int {
 Red = 0,
 Green,
 Blue
};

Color my_color = Green;

46 / 70

union
Unions allow you to define a type that can hold different data types.

Only one member of a union can be accessed at a time.

Useful for optimizing memory usage.

Example

union Duration {
 int seconds;
 short hours;
};

Duration d;
d.seconds = 259200;

short h = d.hours; // Contains garbage: undefined behavior.

47 / 70

struct
Structs (structures) allow you to group related data members into a single unit.

Members can have different data types.

Structs provide a way to create custom data structures.

Example

struct Point {
 int x;
 int y;
};

Point p;
p.x = 3;
p.y = 5;

Actually, in C++ struct is just a special type of class . When Referring to C-style structs, a
more proper name would be Plain Old Data (POD) structs.

48 / 70

Plain Old Data (POD) structs
POD structs are classes with simple data members and no user-defined constructors or
destructors.

They have C-like semantics and can be used in low-level operations.

Example

struct Rectangle {
 double width;
 double height;
};

Rectangle r;
r.width = 10;
r.height = 20;

Rectangle s{5, 10};
Rectangle t = s; // POD structs are trivially copyable.

49 / 70

Looking towards classes
Object-oriented programming (OOP) is a programming paradigm that uses classes and
objects.

C++ is an object-oriented language that supports OOP principles.

Classes are user-defined data types that encapsulate data and behavior.

Classes extend structs by including member functions other than data.

OOP promotes code reusability, modularity, and organization.

50 / 70

Declarations and definitions

51 / 70

Declaration
Declarations inform the compiler about the existence of variables or functions.

They provide type information but do not allocate memory or provide implementation.

int x; // Declaration of 'x'.
extern int y; // Declaration of 'y'.

struct X; // Forward-declaration. What if I want to use both X in Y and Y in X?
struct Y { X var; };

Definition
Definitions provide the actual implementation of variables or functions.

They allocate memory for variables or specify the behavior of functions.

int x = 5; // Definition of 'x'.

52 / 70

Declaring functions
Function declarations provide enough information for the compiler to use the function.

They specify the return type, name, and parameter types.

Function declarations are typically placed in header files.

Example

int add(int a, int b); // Declaration of 'add' function.

53 / 70

Defining functions
Function definitions specify the implementation of a function.

They include the function's return type, name, parameters, and code block.

They are typically placed in source files.

Example

int add(int a, int b) { // Definition of 'add' function.
 return a + b;
}

54 / 70

Code organization

55 / 70

Modular programming
Modular programming divides code into separate modules or units.

Each module focuses on a specific task or functionality.

Benefits:
Improved code organization and readability

Easier maintenance and debugging

Code reusability

Encapsulation of functionality

56 / 70

Building blocks of C++ code modules
C++ code modules consist of:

Header files (.h or .hpp) for declarations

Source files (.cpp) for definitions

Implementation files (.cpp) for non-template classes

Header files contain function prototypes and class declarations.

Source files contain function and class definitions.

57 / 70

Header files
Header files (.h or .hpp) contain declarations and prototypes.

They define the interface to a module or class.

Header files are included in source files to access declarations.

// my_module.hpp
int add(int a, int b); // Function prototype.

Best practices
Use include guards or #pragma once to prevent multiple inclusions.

Include only necessary headers to reduce compilation time.

Keep header files concise and focused on declarations.

Use descriptive and unique names for header files.

Document complex or non-obvious declarations.
58 / 70

Source files
Source files (.cpp) contain the definitions of functions and classes.

They implement the functionality declared in header files.

Source files include header files for access to declarations.

// my_module.cpp
#include "my_module.hpp" // Include the corresponding header.

int add(int a, int b) {
 return a + b;
}

59 / 70

The need for header guards
Header guards (or include guards) prevent multiple inclusions of the same header file.

They ensure that a header file is included only once during compilation.

Header guards are essential to avoid redefinition errors.

Without header guards, if a header file is included multiple times in a source file or across multiple
source files, it can lead to redefinition errors.

60 / 70

How to implement header guards
Place #ifndef , #define , and #endif or #pragma once directives in the header file.

Use a unique identifier (usually based on the filename) as the guard symbol.

Example (file my_module.hpp):

#ifndef MY_MODULE_HPP__
#define MY_MODULE_HPP__

// ...

#endif // MY_MODULE_HPP__

Modern compilers also support:

#pragma once

// ...

61 / 70

Preventing header file inclusion issues
To avoid issues with header file inclusions:

Include necessary headers in your source files.

Avoid circular dependencies (A includes B, and B includes A).

Use forward declarations when possible to minimize dependencies.

Follow a consistent naming convention for header guards.

62 / 70

Managing scope in C++
Scope determines the visibility and lifetime of variables and functions.

C++ uses blocks, functions, and namespaces to manage scope.

Variables declared inside a block have block scope.

Variables declared outside of any function or class have global scope.

Namespaces help organize code and avoid naming conflicts.

int x = 10;

{ // Manually define a scope.
 int y = 20;
 // ...
} // Destroy all variables local to the scope.
// Beware: dynamically allocated variables must be deleted manually.

std::cout << y << std::endl; // Error: 'y' is undefined here.

63 / 70

Using namespaces for organization
Namespaces group related declarations to avoid naming collisions.

They provide a way to organize code into logical units.

Namespace members are accessed using the :: operator.

namespace Math {
 int add(int a, int b) {
 return a + b;
 }
}

int result1 = Math::add(3, 4); // Accessing a namespace member.

using namespace Math; // Useful, but dangerous due to possible name clashes.
int result2 = add(3, 4);

Anonymous (i.e. unnamed) namespaces are only accessible from the current compilation unit.

64 / 70

The build toolchain in practice

65 / 70

Preprocessor and compiler
The preprocessor (cpp) handles preprocessing directives.

It includes headers, performs macro substitution, and removes comments.

The compiler (g++ , clang++) translates source code into object files.

Preprocessor and compiler commands are combined when you run g++ or clang++ .

Example (project with three files: module.hpp , module.cpp , main.cpp):

Preprocessor.
g++ -E module.cpp -I/path/to/include/dir -o module_preprocessed.cpp
g++ -E main.cpp -I/path/to/include/dir -o main_preprocessed.cpp

Compiler.
g++ -c module_preprocessed.cpp -o module.o
g++ -c main_preprocessed.cpp -o main.o

66 / 70

Linker
The linker (ld) combines object files and resolves external references.

It creates an executable program from multiple object files.

Linker errors occur if functions or variables are not defined.

Example

g++ module.o main.o -o my_program

Link against an external library:

g++ module.o main.o -o my_program -lmy_lib -L/path/to/my/lib

In this example, the -lmy_lib flag is used to link against the library libmy_lib.so . The -l flag
is followed by the library name without the lib prefix and without the file extension .so
(dynamic) or .a (static).

67 / 70

Preprocessor, compiler, linker: a simplified procedure
For small projects with few dependencies, the following command performs the preprocessing,
compilation and linking phase:

g++ module1.cpp module2.cpp main.cpp -I/path/to/include/dir -o my_program

 Warning: different compilers lead to different behavior
Please keep in mind that different compilers can yield different behaviors and trigger distinct
warnings or errors or print them in a less/more human-readable format.

For a demonstration, see this example on GodBolt comparing the output of GCC and Clang on
the same code.

68 / 70

https://godbolt.org/z/1M83E4sYE

Loader
The loader loads the executable program into memory for execution.

It allocates memory for the program's data and code sections.

The operating system's loader handles this task.

Example

./my_program

If linked against an external dynamic library, the loader has to know where it is located. The list of
directories where to find dynamic libraries is contained in the colon-separated environment
variable LD_LIBRARY_PATH .

export LD_LIBRARY_PATH+=:/path/to/my/lib
./my_program

69 / 70

 Classes and object-oriented programming

70 / 70

	Page 1
	Lecture 02
	Introduction to C++. Built-in data types. Variables, pointers and references. Control structures. Functions.
	Advanced Programming - SISSA, UniTS, 2025-2026
	Giuseppe Alessio D'Inverno
	07 Oct 2025

	Page 2
	Why C++?

	Page 3
	Outline

	Page 4
	Structure of a basic C++ program

	Page 5
	Structure of a basic C++ program

	Page 6
	Hello, world!

	Page 7
	How to compile and run

	Page 8
	C++ as a strongly typed language
	Example

	Page 9
	Fundamental types

	Page 10
	Fundamental types

	Page 11
	Integer numbers
	Example

	Page 12
	Floating-point numbers
	Example

	Page 13
	Floating-point arithmetic

	Page 14
	Floating-point arithmetic limitations

	Page 15
	Characters and strings
	Example

	Page 16
	Boolean types
	Example

	Page 17
	Initialization and aliases
	Example
	Example

	Page 18
	auto and type conversions.

	Page 19
	Memory management: variables, pointers, references, arrays

	Page 20
	Heap vs. stack
	Stack memory
	Heap memory

	Page 21
	Variables and pointers

	Page 22
	Lifetime and scope
	Best practices

	Page 23
	Variables
	Example

	Page 24
	Pointers
	Example

	Page 25
	Pointers: common problems

	Page 26
	References
	Example

	Page 27
	Arrays
	Example

	Page 28
	Conditional statements and control structures

	Page 29
	if ... else if ... else
	Example

	Page 30
	switch ... case
	Example

	Page 31
	for loop
	Example

	Page 32
	while loop
	Example

	Page 33
	Functions and operators

	Page 34
	Functions
	Example

	Page 35
	void
	Example

	Page 36
	Pass by value vs. pointer vs. reference (1/2)

	Page 37
	Pass by value vs. pointer vs. reference (2/2)
	Best practices

	Page 38
	Return by value vs. pointer vs. reference (1/2)

	Page 39
	Return by value vs. pointer vs. reference (2/2)
	Best practices

	Page 40
	const correctness (1/2)

	Page 41
	const correctness (2/2)
	Benefits
	Best practices

	Page 42
	Operators
	Example

	Page 43
	Increment operators

	Page 44
	Function overloading

	Page 45
	User-defined types

	Page 46
	enum
	Example

	Page 47
	union
	Example

	Page 48
	struct
	Example

	Page 49
	Plain Old Data (POD) structs
	Example

	Page 50
	Looking towards classes

	Page 51
	Declarations and definitions

	Page 52
	Declaration
	Definition

	Page 53
	Declaring functions
	Example

	Page 54
	Defining functions
	Example

	Page 55
	Code organization

	Page 56
	Modular programming

	Page 57
	Building blocks of C++ code modules

	Page 58
	Header files
	Best practices

	Page 59
	Source files

	Page 60
	The need for header guards

	Page 61
	How to implement header guards

	Page 62
	Preventing header file inclusion issues

	Page 63
	Managing scope in C++

	Page 64
	Using namespaces for organization

	Page 65
	The build toolchain in practice

	Page 66
	Preprocessor and compiler
	Example (project with three files: module.hpp, module.cpp, main.cpp):

	Page 67
	Linker
	Example

	Page 68
	Preprocessor, compiler, linker: a simplified procedure
	⚠️ Warning: different compilers lead to different behavior

	Page 69
	Loader
	Example

	Page 70
	➡️ Classes and object-oriented programming

