
Lecture 03

Object oriented programming. Classes and access control in
C++. Operators.

Advanced Programming - SISSA, UniTS, 2025-2026

Pasquale Claudio Africa

14 Oct 2025

1 / 54

Outline
1. Introduction to Object-Oriented Programming (OOP)

2. Classes and objects in C++

3. Notes on code organization

4. Encapsulation and access control

5. Operator overloading

2 / 54

Introduction to
Object-Oriented Programming (OOP)

3 / 54

What is OOP?
OOP is a programming paradigm that revolves around objects.

Objects represent instances of classes, encapsulating data and behavior.

Key principles include encapsulation, inheritance, and polymorphism.

OOP in C++
C++ is not (only) a OOP language.

C++ is a multi-paradigm programming language that supports procedural, object-oriented,
and generic programming.

C++ allows developers to combine these paradigms effectively for various programming
tasks.

4 / 54

Key principles of OOP
Object-Oriented Programming (OOP) is a programming paradigm that emphasizes the use of
objects to represent real-world entities and concepts. It is based on several key principles:

Encapsulation: Encapsulation bundles data (attributes) and the functions (methods) that
operate on the data into a single unit called an object. This promotes data hiding and reduces
the complexity of the code.

Inheritance: Inheritance allows you to create new classes (derived or child classes) based on
existing classes (base or parent classes). It enables code reuse and the creation of class
hierarchies.

Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a
common base class. It promotes code flexibility and the ability to work with objects at a higher
level of abstraction.

5 / 54

RAII idiom (Resource Acquisition Is Initialization)

Holding a resource is a class invariant, tightly bound to the object's
lifetime

RAII idiom:
1. Encapsulate a resource within a class (constructor).

2. Utilize the resource through a local instance of the class.

3. Automatically release the resource when the object goes out of scope (destructor).

Implications
1. C++ does not rely on a garbage collector.

2. Resource management becomes the programmer's responsibility.

6 / 54

Advantages of OOP
OOP offers numerous advantages, including:

Modularity: OOP encourages the division of a complex system into smaller, manageable
objects, promoting code modularity and reusability.

Maintenance: Objects are self-contained, making it easier to maintain and update specific
parts of the code without affecting other parts.

Flexibility: Inheritance and polymorphism provide flexibility, allowing you to extend and
modify the behavior of classes without altering their existing code.

Readability: OOP promotes code readability by organizing data and functions related to a
specific object within a class.

7 / 54

Classes and objects in C++

8 / 54

Creating objects (1/2)
In C++, objects are instances of classes. Here's an example of creating and using a Car object:

class Car {
public:
 std::string manufacturer;
 std::string model;
 unsigned int year;

 void start_engine() {
 std::cout << "Engine started!" << std::endl;
 }
};

9 / 54

Creating objects (2/2)
// Access by direct instance.
Car my_car; // Creating an object of class Car.

my_car.manufacturer = "Volkswagen";
my_car.model = "Tiguan";
my_car.year = 2024;

my_car.start_engine(); // Invoking a method.

// Access by pointer.
// This works also for dynamically allocated objects.
Car* my_car_ptr = new Car{};

my_car_ptr->manufacturer = "Alfa Romeo";
my_car_ptr->model = "Giulietta";
my_car_ptr->year = 2010;

my_car_ptr->start_engine(); // Invoking a method.
delete my_car_ptr;

10 / 54

Members

Member variables, also known as attributes or instance variables, store data within a class. In
the Car class, manufacter , model , and year are member variables that hold information
about the car. These variables encapsulate the car's characteristics within the class.

Member functions, or methods, define the behavior of a class. The start_engine method in
the Car class initiates the car's engine. Methods encapsulate the actions or operations that
can be performed on the object's data.

Static members
Static members in a class are shared among all instances of that class. They are declared using
the static keyword and can be accessed using the class name rather than an object. Static
members are useful for maintaining shared data or functionality across objects.

11 / 54

static members
class Circle {
public:
 static const double PI = 3.14159265359; // Static constant shared by all Circle objects.
 double radius;

 double calculate_area() {
 return PI * radius * radius;
 }

 static void print_shape_name() {
 std::cout << "This is a circle." << std::endl;
 }
};

Circle circle;
circle.radius = 5.0;

const double area = circle.calculate_area(); // Accessing a non-static member.
const double pi_value = Circle::PI; // Accessing a static member.
Circle::print_shape_name();

12 / 54

const members (1/2)
When used in the context of classes, const can be applied to member variables, member
functions, and even to the class itself.

class MyClass {
public:
 MyClass(int x) : value(x) {} // Constructor initializes the const member.

 void print_value() const {
 // value *= 2; // Illegal!
 std::cout << "Const version: " << value << std::endl;
 }

 const int value;
};

 If you have a const member function but need to modify a member variable, you can declare
that variable as mutable (could be dangerous).

13 / 54

const members (2/2)

class MyClass {
public:
 void print() {
 std::cout << "Non-const version" << std::endl;
 }

 void print() const {
 std::cout << "Const version" << std::endl;
 }
};

MyClass obj1; // Create a non-const object.
const MyClass obj2; // Create a const object.

obj1.print(); // Calls the non-const version.
obj2.print(); // Calls the const version.

14 / 54

The this pointer
The this pointer is a special keyword in C++ that represents a pointer to the current instance of
a class. It is a hidden argument to all non-static member functions and is automatically passed to
those functions by the compiler.

It allows to access members of an object from within its member functions. It helps resolve
ambiguity and allows you to access the class's members within its member functions, by allowing
to distinguish between the local variables and member variables of a class when they have the
same name.

class MyClass {
public:
 int x;

 void print_x() const {
 std::cout << "Value of x: " << this->x << std::endl; // Using this pointer with the arrow operator.
 }
};

15 / 54

Constructors
Constructors are special member functions that initialize objects when they are created. They
have the same name as the class and can take arguments to set initial values for member
variables.

Types of constructor
Default constructor: It takes no arguments. If you don't provide any constructors for a class,
C++ will generate a default constructor automatically using default values (e.g., zero for
numbers, empty for strings).

Parameterized constructor: It takes one or more parameters to initialize member variables
based on the provided values. It creates objects with specific initial states.

Copy constructor: It creates a new object as a copy of an existing object of the same class.
It takes a reference to an object of the same class as a parameter. It is invoked when objects
are copied, passed by value, or initialized with other objects.

16 / 54

Default constructor
class MyClass {
public:
 // Default constructor.
 MyClass() {
 // Initialization code (if needed).
 }

 // Or:
 // MyClass() = default;

 std::string name;
 unsigned int length;
};

MyClass obj; // Direct initialization.
MyClass obj2{}; // Uniform initialization (since C++11; preferred).

MyClass obj3(); // Illegal: the compiler believes we are declaring a function.

17 / 54

Parametrized constructors
class Student {
public:
 Student(std::string name, unsigned int age) {
 this->name = name;
 this->age = age;
 }

 void display_info() const {
 std::cout << "Name: " << name << ", Age: " << age << std::endl;
 }

 std::string name;
 unsigned int age;
};

Student student1("Alice", 20); // Creating an object and initializing it using a constructor.
student1.display_info();

Student student2{"Bob", 23}; // Uniform initialization.
student2.display_info();

18 / 54

Initializer list
An initializer list is used within a constructor to initialize member variables before entering the
constructor body. It is a recommended practice, especially for initializing member objects or
constants, as it can improve performance.

class Rectangle {
public:
 Rectangle(double length, double width) : length(length), width(width) {
 // Constructor body (if needed).
 }

 double calculate_area() const {
 return length * width;
 }

 double length;
 double width;
};

Rectangle rectangle{5.0, 3.0}; // Creating an object and initializing it using an initializer list.
const double area = rectangle.calculate_area();

19 / 54

Copy constructor and copy assignment
class Book {
public:
 Book(std::string title, std::string author) : title(title), author(author) {}

 // Copy constructor.
 Book(const Book& other) : title(other.title), author(other.author) {}

 // Copy assignment operator.
 Book& operator=(const Book& other) {
 if (this != &other) {
 title = other.title;
 author = other.author;
 }
 return *this;
 }

 void display_info() const {
 std::cout << "Title: " << title << ", Author: " << author << std::endl;
 }

 std::string title;
 std::string author;
};

Book book1{"The catcher in the rye", "J.D. Salinger"}; // Parametrized constructor.
Book book2 = book1; // Copying using the copy constructor.
Book book3{"Marcovaldo", "I. Calvino"}; // Parametrized constructor.
book3 = book1; // Copying using the copy assignment operator.

20 / 54

Default constructor and default initialization
If you don't provide any constructors for a class, C++ will automatically generate a default
constructor. However, if you provide any custom constructors, the default constructor won't be
generated unless you explicitly define it.

Default initialization of primitive types (e.g., int , double) sets them to zero, while non-
primitive types (e.g., strings, vectors, ...) may have default constructors that initialize them to
appropriate default values.

21 / 54

When constructors are called (1/2)

1. Object creation: When you create an object of a class using its constructor, the constructor is
called.

MyClass obj1; // Calls the default constructor.
MyClass obj2{}; // Calls the default constructor.
Student student{"Alice", 20}; // Calls the parametrized constructor.

2. Copy initialization: When you initialize one object with another, the copy constructor is
called.

MyClass obj1 = obj2; // Calls the copy constructor.

22 / 54

When constructors are called (2/2)

3. Pass and return by value: When you pass an object by value to a function or return an
object by value from a function, the copy constructor is called.

void some_function(Student s) {
 // Calls the copy constructor when s is passed.
}

Student create_student() {
 Student s{"Bob", 22};
 return s; // Calls the copy constructor when s is returned.
}

4. Dynamic object creation: When you create objects dynamically using new, the constructor is
called.

MyClass* ptr = new MyClass{}; // Calls the default constructor.

23 / 54

Destructor (1/2)
A destructor is another special member function that is used to clean up resources held by an
object before it goes out of scope or is explicitly deleted. Destructors have the same name as the
class but preceded by a tilde (~). They are called automatically when an object's lifetime ends.

Rule of three
If a class defines (or deletes) one of the three special member functions:

destructor

copy constructor

copy assignment operator

then it should probably provide all three of them.

24 / 54

Destructor (2/2)
class FileHandler {
public:
 FileHandler(std::string filename) : filename(filename) {
 file.open(filename);
 }

 ~FileHandler() {
 if (file.is_open()) {
 file.close();
 }
 }

 std::string filename;
 std::ofstream file;
};

{
 FileHandler file{"data.txt"}; // Automatically destroyed when going out of scope.
} // When going out of scope, destructor is called, and the file is closed.

25 / 54

Constructors and destructor
implicitly declared by the compilers

Source: https://howardhinnant.github.io/classdecl.html 26 / 54

https://howardhinnant.github.io/classdecl.html

Notes on code organization

27 / 54

The inline directive
In C++, the inline keyword can be applied to free functions (functions that are not members of
any class) to suggest that the function should be inlined by the compiler. This means that the
compiler replaces function calls with the actual function code at the call site, potentially leading to
better performance, especially for small, frequently used functions.

// Inline function declaration for a free function.
inline int add(int a, int b) {
 return a + b;
}

const int result = add(5, 7); // Calls the inline function.
std::cout << "Result: " << result << std::endl;

28 / 54

Best practices (1/2)
Function size: Inlining is most effective for small functions. For larger functions, inlining can
lead to code bloat and may not improve performance.

Compiler's discretion: The inline keyword is a suggestion to the compiler, and the
compiler can choose whether or not to inline the function based on optimization settings and
other factors.

Header files: When defining functions in header files, always mark them as inline (or use
constexpr or templates) to avoid multiple definition errors during linking. Header guards

(see Lecture 02) prevent multiple inclusions within a single translation unit, but they do not
prevent multiple definitions across different source files.

Balancing readability: While inlining can improve performance, it should be used judiciously.
Overusing inline for functions that don't provide significant performance benefits can lead to
less readable code due to poor code organization.

29 / 54

Best practices (2/2)

Pros of using inline
Potential performance improvement: Inlining small functions can eliminate the function call
overhead and improve runtime performance.

Avoiding multiple definitions: When the same inline function is defined in multiple
translation units (source files), the One Definition Rule (ODR) allows the multiple definitions to
be treated as equivalent, which avoids linker errors.

In summary, you can use the inline keyword to suggest to the compiler that it should consider
inlining the function for potential performance improvement. However, it's essential to balance
performance considerations with code readability and maintainability.

30 / 54

Where to define class member functions?
In C++, member functions of a class can be defined either in-class (inline) or out-of-class. Each
approach has its use cases and implications.

In-class (inline) definition (1/3)
Member functions are defined within the class declaration itself, typically in the header file. This is
common for short, simple functions that are typically one-liners or very concise.

// my_class.hpp
class MyClass {
public:
 int add(int a, int b) { // inline keyword is implicit here.
 return a + b;
 }
};

31 / 54

In-class definition (2/3)
The previous code is equivalent to the following:

// my_class.hpp

class MyClass {
public:
 int add(int a, int b);
};

int MyClass::add(int a, int b) // inline keyword is implicit here.
{
 return a + b;
}

32 / 54

In-class definition (3/3)

Pros
Compact and concise code.

Compiler may choose to inline the function for performance.

Cons
May lead to code bloat if used extensively with large functions.

Changes to the function may necessitate recompilation of all translation units that include the
header.

33 / 54

Out-of-class definition (1/2)
Member functions are declared in the class declaration (in the header file) and defined separately
in the source file (.cpp file). Typically used for functions with larger implementations or when you
want to separate interface from implementation.

// my_class.hpp

class MyClass {
public:
 int add(int a, int b);
};

// my_class.cpp

#include "my_class.hpp"

int MyClass::add(int a, int b) {
 return a + b;
}

34 / 54

Out-of-class definition (2/2)

Pros
Separation of interface from implementation for cleaner code organization.

Changes to the function implementation do not require recompilation of all translation units
that include the header.

Cons
Slightly more verbose in terms of code.

Requires separate source file for function definitions.

35 / 54

Best practices
1. Use in-class (inline) definitions for very short and simple functions (e.g., accessors,

mutators) to potentially benefit from inlining.

2. Use out-of-class definitions for larger or more complex functions to keep the header files
clean and to separate interface from implementation.

3. Consider code readability and maintainability when making a choice.

In practice, a combination of both in-class and out-of-class definitions is often used, with the goal
of keeping the code organized, maintainable, and efficient.

36 / 54

Encapsulation and access control

37 / 54

Data encapsulation
Data encapsulation is a fundamental concept in OOP that involves bundling data (attributes) and
methods (functions) that operate on that data into a single unit called an object. Encapsulation
helps hide the internal details of an object and exposes only the necessary functionality through
well-defined interfaces.

class BankAccount {
public:
 BankAccount(std::string account_holder, double balance) : account_holder(account_holder), balance(balance) {}

 void deposit(double amount) {
 balance += amount;
 }

 double get_balance() const {
 return balance;
 }

private:
 std::string account_holder;
 double balance;
};

38 / 54

Access specifiers (1/2)
C++ provides access specifiers to control the visibility and accessibility of class members
(variables and methods). These access specifiers enforce encapsulation and access control within
the class.

public : Members declared as public are accessible from any part of the program. They form
the class's public interface.

protected : Members declared as protected are accessible within the class and by derived
classes (in inheritance scenarios).

private : Members declared as private are not accessible from outside the class. They are
used for internal implementation details.

 Inheritance will be covered in the next lecture!

39 / 54

Access specifiers (2/2)
class MyClass {
public:
 int public_var; // Public member variable.
 void public_func() { // Public member function.
 // ...
 }

private:
 int private_var; // Private member variable.
 void private_func() { // Private member function.
 // ...
 }
};

40 / 54

class vs. struct
In C++, both class and struct are used to define classes. The only difference between them is
the default access specifier:

In a class , members are private by default.

In a struct , members are public by default.

class MyClass {
 int x; // Private by default.
public:
 int y; // Public.
};

struct MyStruct {
 int x; // Public by default.
private:
 int y; // Private.
};

41 / 54

Getter and setter methods (1/2)
Getter and setter methods, also known as accessors and mutators, are used to control access to
private member variables.

Getter methods allow reading the values of private variables.

Setter methods enable modifying those values in a controlled manner.

They are commonly used for encapsulation and access control.

42 / 54

Getter and setter methods (2/2)
class TemperatureSensor {
public:
 double get_temperature() const {
 return temperature;
 }

 void set_temperature(double new_temperature) {
 if (new_temperature >= -50.0 && new_temperature <= 150.0) {
 temperature = new_temperature;
 } else {
 std::cout << "Invalid temperature value!" << std::endl;
 }
 }

private:
 double temperature;
};

43 / 54

friend classes (1/2)
A friend class is a class that is granted access to the private members of another class. This
access allows the friend class to operate on the private members of the class it is friends with.

class Circle {
public:
 friend class Cylinder; // Cylinder class is a friend of Circle.

 Circle(double r) : radius(r) {}

 double get_area() const {
 return 3.14159265359 * radius * radius;
 }

private:
 double radius;
};

44 / 54

friend classes (2/2)

class Cylinder {
public:
 Cylinder(const Circle &circle, double height) : circle(circle), height(height) {}

 double get_volume() const {
 // Accessing the private member 'radius' of the Circle class.
 return 3.14159265359 * circle.radius * circle.radius * height;
 }

private:
 double height;
 const Circle circle;
};

Circle circle{1.0};
Cylinder cylinder{circle, 0.5};
const double volume = cylinder.get_volume();

45 / 54

Operator overloading

46 / 54

Operator overloading (1/2)
Operator overloading is a feature in C++ that allows you to define custom behaviors for operators
when used with objects of your own class. In essence, it enables you to extend the functionality of
operators beyond their predefined meanings, making objects of your class work with operators in
a way that makes sense for your class's context.

Why use operator overloading?
Operator overloading can improve code readability and maintainability by allowing you to write
more natural and expressive code. It lets you use operators like + , - , * , / , and many others
to perform operations specific to your class, just as you would with built-in data types.

47 / 54

Operator overloading (2/2)
class Complex {
public:
 // ...

 Complex operator+(const Complex& other) {
 Complex result;
 result.real = this->real + other.real;
 result.imag = this->imag + other.imag;
 return result;
 }

private:
 double real;
 double imag;
};

Complex a{2.0, 3.0};
Complex b{1.0, 2.0};
Complex c = a + b; // Using the overloaded '+' operator.

48 / 54

Commonly overloaded operators
While you can overload many C++ operators , here are some of the most commonly overloaded
operators:

Arithmetic operators: + , - , * , / , % , etc.

Comparison operators: == , != , < , > , <= , >= , <=> (since C++20), etc.

Assignment operators: = , += , -= , etc.

Increment/decrement operators: ++ , -- .

Stream insertion/extraction operators: << , >> (used for input and output).

Function call operator: () (used to create objects that act like functions).

Subscript operator: [] (used to access elements of an array-like class).

Member access operator: -> (used to access members of an object through a pointer).

49 / 54

https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

Overloading as a member vs. non-member function
You can overload operators as member functions or non-member functions.

When overloaded as a member function, the left operand is an object of the class, and the
right operand is passed as a parameter.

When overloaded as a non-member function, both operands are passed as parameters.
This is often preferred when the left operand is not an object of the class you're overloading
the operator for. Sometimes, you may need to access private members of a class when
overloading an operator. In such cases, you can declare the overloaded operator function as
a friend of the class. This allows the operator function to access the private members of the
class.

50 / 54

friend functions

class MyClass {
public:
 MyClass(int v) : value(v) {}

 // Declaring the '<<' operator as a friend function.
 friend std::ostream& operator<<(std::ostream& os, const MyClass& obj);

private:
 int value;
};

// Overloading the '<<' operator as a non-member function (outside the class).
std::ostream& operator<<(std::ostream& os, const MyClass& obj) {
 os << obj.value;
 return os;
}

MyClass obj;
std::cout << obj << std::endl;

51 / 54

A more complex example
class Point {
private:
 int x, y;

public:
 Point operator+(const Point& other) {
 return Point(this->x + other.x, this->y + other.y);
 }

 bool operator==(const Point& other) const {
 return (this->x == other.x && this->y == other.y);
 }

 friend std::ostream& operator<<(std::ostream& os, const Point& p) {
 os << "(" << p.x << ", " << p.y << ")";
 return os;
 }
};

Point p3 = p1 + p2;
if (p1 == p2) {
 cout << "p1 is equal to p2" << endl;
} else {
 cout << "p1 is not equal to p2" << endl;
}
std::cout << p3 << std::endl;

52 / 54

Operator overloading: best practices
1. Operators that cannot be overloaded: Some operators, like :: , .* , and ? : , cannot be

overloaded.

2. Don't change the basic meaning of an operator: Overloading should make sense in the
context of your class. For example, overloading + for string concatenation is intuitive, but
overloading it for subtraction is not.

3. Be mindful of operator precedence and associativity: Overloaded operators should follow
the same precedence and associativity rules as their built-in counterparts (such as in
expressions like 2 * 3 + 1).

4. Avoid excessive overloading: Overloading too many operators can make your code less
readable and harder to maintain. Focus on overloading the operators that provide significant
benefits.

53 / 54

 Inheritance + polymorphism

54 / 54

	Page 1
	Lecture 03
	Object oriented programming. Classes and access control in C++. Operators.
	Advanced Programming - SISSA, UniTS, 2025-2026
	Pasquale Claudio Africa
	14 Oct 2025

	Page 2
	Outline

	Page 3
	Introduction to Object-Oriented Programming (OOP)

	Page 4
	What is OOP?
	OOP in C++

	Page 5
	Key principles of OOP

	Page 6
	RAII idiom (Resource Acquisition Is Initialization)
	Holding a resource is a class invariant, tightly bound to the object's lifetime
	RAII idiom:
	Implications

	Page 7
	Advantages of OOP

	Page 8
	Classes and objects in C++

	Page 9
	Creating objects (1/2)

	Page 10
	Creating objects (2/2)

	Page 11
	Members
	Static members

	Page 12
	static members

	Page 13
	const members (1/2)

	Page 14
	const members (2/2)

	Page 15
	The this pointer

	Page 16
	Constructors
	Types of constructor

	Page 17
	Default constructor

	Page 18
	Parametrized constructors

	Page 19
	Initializer list

	Page 20
	Copy constructor and copy assignment

	Page 21
	Default constructor and default initialization

	Page 22
	When constructors are called (1/2)

	Page 23
	When constructors are called (2/2)

	Page 24
	Destructor (1/2)
	Rule of three

	Page 25
	Destructor (2/2)

	Page 26
	Constructors and destructor implicitly declared by the compilers

	Page 27
	Notes on code organization

	Page 28
	The inline directive

	Page 29
	Best practices (1/2)

	Page 30
	Best practices (2/2)
	Pros of using inline

	Page 31
	Where to define class member functions?
	In-class (inline) definition (1/3)

	Page 32
	In-class definition (2/3)

	Page 33
	In-class definition (3/3)
	Pros
	Cons

	Page 34
	Out-of-class definition (1/2)

	Page 35
	Out-of-class definition (2/2)
	Pros
	Cons

	Page 36
	Best practices

	Page 37
	Encapsulation and access control

	Page 38
	Data encapsulation

	Page 39
	Access specifiers (1/2)
	⚠️ Inheritance will be covered in the next lecture!

	Page 40
	Access specifiers (2/2)

	Page 41
	class vs. struct

	Page 42
	Getter and setter methods (1/2)

	Page 43
	Getter and setter methods (2/2)

	Page 44
	friend classes (1/2)

	Page 45
	friend classes (2/2)

	Page 46
	Operator overloading

	Page 47
	Operator overloading (1/2)
	Why use operator overloading?

	Page 48
	Operator overloading (2/2)

	Page 49
	Commonly overloaded operators

	Page 50
	Overloading as a member vs. non-member function

	Page 51
	friend functions

	Page 52
	A more complex example

	Page 53
	Operator overloading: best practices

	Page 54
	➡️ Inheritance + polymorphism

