
Lecture 04

Inheritance and polymorphism in C++.

Advanced Programming - SISSA, UniTS, 2025-2026

Pasquale Claudio Africa

21 Oct 2025

1 / 52

Outline
1. Class collaborations

2. Inheritance

3. Dynamic (runtime) polymorphism

4. Abstract classes

2 / 52

Class collaborations

3 / 52

Relationships between classes (1/2)
Classes can have various relationships, including:

1. Association: A loose relationship where classes are related, but one does not necessarily
contain the other. For example, a Student class may be associated with a Course or a
Teacher class. One class is associated with another by holding a reference or pointer to it.

This is the simplest form of collaboration.

2. Aggregation: A "has-a" relationship where one class contains another as a part, but the
contained object can exist independently. For example, a Car class may aggregate an
Engine class. A class contains objects of other classes, but the contained objects can exist

independently of the container class.

4 / 52

Relationships between classes (2/2)

3. Composition: A stronger form of aggregation "part-of" relationship where one class contains
another as a part, and the part cannot exist independently. For example, a Building class
composes Room classes. The contained objects (components) are tightly bound to the
lifecycle of the container class. When the container class is destroyed, so are its components.

4. Inheritance: Inheritance represents an "is-a" relationship, where one class (the derived or
subclass) inherits properties and behaviors from another class (the base or superclass). A
class derives from another class, inheriting its behavior and properties. This form of
collaboration allows for extending functionality. This is a fundamental form of collaboration in
object-oriented programming.

5 / 52

Association (1/3)
Association is a relationship between two or more classes that defines how they are related to
each other. It represents a general form of relationship between classes.

class Course {
public:
 Course(const std::string& name) : course_name(name) {}

 const std::string& get_course_name() const {
 return course_name;
 }

private:
 std::string course_name;
};

6 / 52

Association (2/3)
class Student {
public:
 Student(const std::string& name) : student_name(name) {}

 void enroll_course(Course *course) {
 // Note: Student does not own the Course object.
 // The Course must remain valid throughout the Student's lifetime.
 enrolled_courses.push_back(course);
 }

 void list_enrolled_courses() const {
 std::cout << student_name << " is enrolled in the following courses:" << std::endl;
 for (const auto& course : enrolled_courses) {
 std::cout << "- " << course->get_course_name() << std::endl;
 }
 }

private:
 std::string student_name;
 std::vector<Course*> enrolled_courses;
};

7 / 52

Association (3/3)
// Creating Course objects.
Course math{"Mathematics"};
Course physics{"Physics"};
Course chemistry{"Chemistry"};

// Creating Student objects.
Student alice{"Alice"};
Student bob{"Bob"};

// Associating students with courses.
alice.enroll_course(&math);
alice.enroll_course(&physics);
bob.enroll_course(&chemistry);

// Listing enrolled courses for each student.
alice.list_enrolled_courses();
bob.list_enrolled_courses();

8 / 52

Aggregation
Aggregation represents a relationship where one class (the whole) contains another class (the
part), but the part can exist independently. It is represented by a "has-a" relationship.

class Engine {
public:
 void start() { /* ... */ }
};

class Car {
private:
 Engine *engine; // Car has-an Engine (aggregation via pointer).
 // Engine can exist independently of Car.

public:
 Car(Engine *e) : engine(e) {} // Car does not own the Engine.
 void drive() { engine->start(); }

 // Engine not deleted in Car's destructor!
};

9 / 52

Composition
Composition is a stronger relationship where one class (the whole) contains another class (the
part), and the part cannot exist independently. It is represented by a "part-of" relationship.

class Room {
 void clean() { /* ... */ };
};

class Apartment {
private:
 Room living; // Composition: Apartment are composed by Room objects.
 Room kitchen; // When Apartment is destroyed, so are the Rooms.
 Room bedroom;

public:
 void clean() { living.clean(); kitchen.clean(); bedroom.clean(); }
};

10 / 52

Views (proxies)
A view (or proxy) is another type of aggregation that enables access to the members of the
aggregating object using a different, often more specialized, interface. For example, you can
access a general matrix as a diagonal matrix using a view:

class Matrix {
public:
 double & operator()(int i, int j) { /* ... */ }
};

class DiagonalView {
public:
 DiagonalView(Matrix &mat) : mat(mat) {}

 // Return by value (returning a reference to a temporary is undefined behavior).
 double operator()(int i, int j) const { return (i == j) ? mat(i, i) : 0.0; }

private:
 Matrix &mat;
}

11 / 52

Inheritance

12 / 52

Inheritance
Inheritance is a mechanism in object-oriented programming that allows a new class (the derived
or subclass) to inherit properties and behaviors from an existing class (the base or superclass).

Inheritance establishes an "is-a" relationship between classes, where the derived class is a
specialized form of the base class.

Example
You may have a base class Shape and derived classes like Circle , Rectangle , and
Triangle . Each derived class "is-a" type of shape.

13 / 52

Inheritance in C++ (1/2)
class Shape { // Base class.
public:
 void f() { std::cout << "f (base class)." << std::endl; }

 void draw() { std::cout << "Drawing a shape." << std::endl; }
};

class Circle : public Shape { // Derived class.
public:
 void g() { std::cout << "g (derived class)." << std::endl; }

 void draw() { std::cout << "Drawing a circle." << std::endl; }
};

Circle circle; // Creating an object of the derived class.
circle.f(); // Calls the f() method of the base class.
circle.g(); // Calls the g() method of the derived class.
circle.draw(); // Calls the draw() method of the derived class (hides base class version).
circle.Shape::draw(); // Calls the draw() method of the base class.

14 / 52

Inheritance in C++ (2/2)
In C++, inheritance is implemented using the class or struct keyword followed by a colon and
the access specifier (public , protected , or private) followed by the base class name. For
example:

class DerivedClass : access-specifier BaseClass {
 // Derived class members and methods...
};

15 / 52

Inheritance and access control (1/3)
class Base {
public:
 int public_data;

protected:
 int protected_data;

private:
 int private_data;
};

16 / 52

Inheritance and access control (2/3)
class DerivedPublic : public Base {
 // public_data remains public.
 // protected_data remains protected.
 // private_data is inaccessible.
};

class DerivedProtected : protected Base {
 // public_data becomes protected.
 // protected_data remains protected.
 // private_data is inaccessible.
};

class DerivedPrivate : private Base { // 'private' is the default, if omitted.
 // public_data becomes private.
 // protected_data becomes private.
 // private_data is inaccessible.
};

17 / 52

Inheritance and access control (3/3)
Public inheritance maintains the "is-a" relationship and allows the derived class to access
and modify the public members of the base class.

Protected inheritance restricts access to the base class's members in the derived class,
making them protected.

Private inheritance encapsulates the base class's members within the derived class, making
them private and not accessible outside the derived class.

18 / 52

Construction of a derived class
When constructing an object of a derived class, the process follows a simple rule:

1. First, variables inherited from the base class are constructed using either the default
constructor or the rule specified in the constructor of the derived class.

2. Any member variables added by the derived class are then constructed according to the
usual rule.

As a result, the members of the base class are available for building members of the derived
class.

class DerivedClass : public BaseClass {
public:
 DerivedClass(int derived_param, int base_param) : BaseClass(base_param) {
 // Initialize derived members.
 }
};

19 / 52

Delegating constructor
In the constructor of a derived class, you can call the constructor of the base class, which is useful
if you need to pass arguments. If no arguments are passed, the default constructor of the base
class is used (in that case, the base class must be default constructible).

class B {
public:
 B(double x) : x(x) { /* ... */ }
private:
 double x;
};

class D : public B {
public:
 D(int i, double x) : B(x), my_i(i) { }
private:
 int my_i;
};

In this example, an instance like D d{4, 12.0} sets d.x to 12.0 and d.my_i to 4 .
20 / 52

Inheriting constructors
It's important to note that constructors are not inherited by default, but they can be explicitly
recalled with using .

class B {
public:
 B(double x) : x(x) { /* ... */ }
private:
 double x;
};

class D : public B {
public:
 using B::B; // Inherits B constructor.
private:
 int my_i = 10;
};

In this example, when you create an instance like D d{12.0} , it calls the B::B(double)
constructor, setting d.x to 12.0 , and d.my_i takes the default value of 10 .

21 / 52

Destruction of a derived class
The destruction of an object of the derived class involves the following steps:

1. First, the member variables defined by the derived class are destroyed in the reverse order of
their declaration.

2. Then, the member variables of the base class are destroyed using the usual rule.

Destructors are called in reverse order.

DerivedClass::~DerivedClass() {
 // Clean up derived resources.

 // ~BaseClass() is automatically called here.
}

22 / 52

Multiple inheritance
In C++, it is possible to derive from more than one base class. The derivation rules apply to each
base class. Possible naming ambiguity issues can be resolved using the fully qualified name:

class D : public B, public C {
public:
 void fun() {
 // If both B and C define f(), you can manually resolve the ambiguity.
 const double x = B::f();
 const double y = C::f();
 // ...
 }
};

Multiple inheritance can lead to the diamond problem , where a class indirectly inherits from the
same base class through multiple paths. C++ provides ways to mitigate these issues through
virtual inheritance, ensuring that only one instance of a shared base class is created.

23 / 52

https://en.wikipedia.org/wiki/Virtual_inheritance

Dynamic (runtime) polymorphism

24 / 52

Polymorphism
Public inheritance is the mechanism through which we implement polymorphism, which allows
objects belonging to different classes within a hierarchy to operate according to an appropriate
type-specific behavior.

1. A pointer or reference to D is implicitly converted to a pointer (reference) to B (upcasting). A
pointer or reference to B can be explicitly converted to a pointer (reference) to D using
static_cast (statically) or dynamic_cast (dynamically).

2. Methods declared virtual in B are overridden by D methods with the same signature.

3. If B *b = new D is a pointer to the base class converted from a D* , calling a virtual
method will, in fact, invoke the method defined in D (this applies to references as well).

25 / 52

"is-a" relationship
Polymorphism should be used only when the relationship between the base and derived class is
an "is-a" relationship. In this context, the public interface of the derived class is a superset of that
of the base class.

This means that one should be able to safely use any member from the public interface of the
base class with an object of the derived class.

Therefore, the base class must define the public interface common to all members of the
hierarchy.

26 / 52

Function overriding (1/4)
Function overriding is a key feature of polymorphism. It allows a derived class to provide its own
implementation for a function that is already defined in the base class.

In C++, you override a base class function in a derived class by using the same function signature
and the virtual keyword in the base class and the override keyword in the derived class.

 This is not to be confused with function (or operator) overloading!

Dynamic binding is the mechanism that determines at runtime which method to call based on the
actual type of the object.

Implementation detail: The compiler implements dynamic binding using a virtual table (vtable).
Each object with virtual functions contains a hidden pointer to its class's vtable. This adds a small
memory and performance overhead.

27 / 52

Function overriding (2/4)
class Base {
public:
 virtual void display() {
 std::cout << "Base class." << std::endl;
 }
};

class Derived : public Base {
public:
 void display() override { // 'override' is optional, but strongly recommended.
 std::cout << "Derived class." << std::endl;
 }
};

Base *ptr = new Derived{};
ptr->display(); // Calls the display() method of the Derived class.
// Without 'virtual', Base::display() would be invoked, instead.
delete ptr;

28 / 52

Function overriding (3/4)
class Polygon {
public:
 virtual double area() { /* ??? */ }
};

class Square : public Polygon {
public:
 double area() override { return side * side; }
private:
 double side;
};

void f(const Polygon &p) {
 const double a = p.area();
 // ...
}

Square s;
f(s); // Legal! Polymorphism converts 'const Square &' to 'const Polygon &'.

29 / 52

Function overriding (4/4)
 Polymorphism applies only when working with pointers or references.

Passing by copy leads to compilation errors:

void f(Polygon p) { // Object slicing occurs here!
 const double a = p.area();
 // ...
}

Square s;
f(s); // Illegal! A Square is not convertible into a Polygon.
 // Even if it were, the Square would be "sliced" to a Polygon.

30 / 52

Preventing object slicing
When working with polymorphic classes, you may want to prevent copying to avoid slicing:

class Shape {
public:
 Shape() = default;

 // Delete copy operations to prevent slicing.
 Shape(const Shape&) = delete;
 Shape& operator=(const Shape&) = delete;

 virtual ~Shape() = default;
 virtual double area() = 0;
};

// Now this is impossible:
// Shape s = Circle{}; // Error: copy constructor is deleted.

Note: Polymorphic objects should typically be manipulated through pointers or references, not by
value.

31 / 52

Covariant return types
A derived class can override a virtual function with a covariant return type: a pointer or reference
to a derived class when the base returns a pointer or reference to a base class.

class Base {
public:
 virtual Base* clone() const {
 return new Base(*this);
 }
};

class Derived : public Base {
public:
 Derived* clone() const override { // Covariant return type: Derived* instead of Base*.
 return new Derived(*this);
 }
};

This maintains type safety while preserving polymorphic behavior.

32 / 52

A (simple) factory of polygons
unsigned int n_sides;

std::cout << "Number of sides: ";
std::cin >> n_sides;

Polygon *p;
if (n_sides == 3)
 p = new Triangle{...};
else if (n_sides == 4)
 p = new Square{...};
else {
 // ...
}

std::cout << "Area: " << p->area() << std::endl;

delete p;

33 / 52

Virtual destructors
When applying polymorphism, the destructor of the base class must be defined as virtual . This
is compulsory when the derived class introduces new member variables.

The reason for this necessity can be illustrated with the following code:

Polygon *p = new Square{...};
// ...
delete p;

In the last line, one should call the Square destructor. If you forget to mark the destructor in
Polygon as virtual , only that of Polygon is called instead. If Square has additional resources,
this can lead to a memory leak.

Note: If you add the flag -Wnon-virtual-dtor at compilation time, the compiler issues a warning
if you have forgotten a virtual destructor.

34 / 52

Is a virtual destructor in a derived class necessary?
 Yes!

But...

It is not necessary to have a virtual destructor in the derived class if:

1. You are using inheritance but not polymorphism. This is the case when inheritance is only
used to add additional functionalities, and you are not planning to address derived objects
through pointers or references to the base. In this case, you have no virtual member functions
(and no virtual destructors).

2. You have a hierarchy of classes where all data members are handled by the base class. The
scope of the derived class is only to change the behavior of the public interface, with no need
for new data members.

35 / 52

Protected and private polymorphism
Protected and private polymorphism uses the other types of inheritance: protected and
private . Private inheritance is the default for classes (hence the need for the public keyword

to indicate public inheritance), while for structs , the default is public.

class D: protected B : Public and protected members of B become protected in D . Only
methods and friends of D and classes derived from D can convert a D* into a B* (applies
to references as well).

class D: private B : Public and protected members of B become private in D . Only
methods and friends of D can convert a D* into a B* (applies to references as well).

36 / 52

Why protected and private inheritance?
The use of protected and private inheritance is quite special. Typically, you use protected
polymorphism when you want to use polymorphism but limit its availability to methods of the
derived classes. The object is not polymorphic for the general public but only within the class
hierarchy.

The use of private polymorphism is less common.

Remember that protected and private inheritance does not implement a strict "is-a" relationship.
These techniques are mentioned here for completeness, but public inheritance is the standard for
polymorphism.

37 / 52

Selective inheritance
In some cases, you may want only a part of the public interface of the base class to be exposed to
the general public. You can achieve this through selective inheritance. Here's an example:

class Base {
public:
 double fun(int i);
 // ...
};

class Derived : private Base {
public:
 using Base::fun; // fun() is made available.
 // ...
};

38 / 52

Abstract classes

39 / 52

Abstract classes
In some cases, the base class represents merely an abstract concept, and it does not make sense
to create concrete objects of that type. In other words, the base class is meant to define the
common public interface of the hierarchy but not to implement it fully.

For this purpose, C++ introduces the concept of an abstract class, which is a class where at least
one virtual method is defined as pure virtual.

class Shape {
public:
 virtual double area() = 0; // Pure virtual method.
};

Shape s; // Illegal! Cannot instantiate an abstract class.

40 / 52

What is an abstract class?
An abstract class is a class that cannot be instantiated. It serves as a blueprint for other
classes and enforces a common interface for its derived classes.

Abstract classes are defined by declaring at least one pure virtual function. These pure virtual
functions have no implementation in the base class and are marked with the virtual
keyword followed by = 0 .

Abstract classes can have regular member functions with implementations and data
members, just like any other class.

In order to become concrete (instantiable) classes, derived classes that inherit from an
abstract class must provide implementations for all of the pure virtual methods.

Pure virtual functions act as placeholders for functionalities that must be provided by derived
classes. They enforce a specific method signature that derived classes must adhere to.

41 / 52

A working example
class Triangle : public Shape {
public:
 double area() override { return 0.5 * base * height; }
private:
 double base;
 double height;
};

class Square : public Shape {
public:
 double area() override { return side * side; }
private:
 double side;
};

Triangle t{1.5, 3.0}; // Legal.
std::cout << t.area() << std::endl;

Square s{0.5}; // Legal.
std::cout << s.area() << std::endl;

42 / 52

The final and override specifier
Two specifiers in C++ help prevent errors: final and override .

final for a method means that the method cannot be overridden.

final for a class means that you cannot inherit from that class.

override specifies that a method is overriding one from the base class.

The override keyword is not mandatory but strongly recommended, as it can trigger the
compiler about possible errors.

Note: The option -Wsuggest-override can be used to make the compiler warn you if an
override appears to be missing.

43 / 52

Examples of final

class A {
public:
 virtual void f() final;
 virtual double g(double);
 // ...
};

class B final : A {
public:
 void f() override; // Error: f() cannot be overridden as it's final in A.
 // ...
};

class C : public B // Error: B is final.
{
 // ...
};

44 / 52

Examples of override
class A {
public:
 virtual void f();
 void g();
 // ...
};

class B : A {
public:
 void f() const override; // Error: Has a different signature from A::foo.

 void f() override; // OK: Base class contains a virtual function with the same signature.

 void g() override; // Error: B::g doesn't override because A::g is not virtual.
}

 Although not mandatory, the override specification when overriding virtual member functions
makes your code safer. It is strongly recommended to use it.

45 / 52

RTTI and typeid
Run-Time Type Information (RTTI) in C++ allows you to determine the actual type of an object at
runtime. RTTI is typically implemented using the typeid operator or dynamic casting.

#include <typeinfo>

class Base {
public:
 virtual void print() { std::cout << "Base class." << std::endl; }
};

class Derived : public Base {
public:
 void print() override { std::cout << "Derived class." << std::endl; }
};

Base base; Derived derived;
std::cout << "Type of base: " << typeid(base).name() << std::endl;
std::cout << "Type of derived: " << typeid(derived).name() << std::endl;
// Note: The output format of name() is implementation-defined (may be mangled).

46 / 52

Type checking with dynamic_cast
Note: dynamic_cast only works with polymorphic types (classes with at least one virtual
function). The compiler needs RTTI, which is enabled by virtual functions.

dynamic_cast<D*>(B*) tries to convert a B* to a D* (downcasting). If the condition fails, it
returns the null pointer; otherwise, it returns the pointer to the derived class. This can be used to
determine to which derived class a pointer to a base class refers.

It also works with references, but if the condition is not satisfied, it throws an exception.

double fun(const Shape &p) {
 auto ptr = dynamic_cast<const Square *>(&p);
 if (ptr != nullptr) {
 // It is a square.
 ptr->get_side(); // This is not a member of the abstract Shape class.
 } else { /* Not a square... */ }
}

47 / 52

Aggregation vs. composition with polymorphic objects
What happens if you want to aggregate your class with a polymorphic object? Should Prism be
responsible for poly_ptr 's lifetime?

class Prism {
public:
 // 1) Take a pointer to an already existing object.
 Prism(Shape *s) : shape{s} {} // const vs. non-const?

 // 2) Alternatively, MyClass handles both creation and destruction.
 void init_as_square(const std::array<Point, 4> &vertices) {
 poly_ptr = new Square{vertices};
 }
 ~Prism() { delete poly_ptr; }

private:
 Shape *shape;
 double height;
}

 In modern C++, smart pointers (covered later) handle ownership automatically. 48 / 52

Pointer or reference?
Some guidelines about aggregation/composition with pointers vs. references.

Reference
Use a (const) reference when the aggregated object doesn't change, as is often the case in a
"View".

If you use a reference, the aggregated object must be passed through the constructor, making
your class non-default-constructible.

Pointer
Use (const) pointers if the aggregated object may change at runtime.

Always initialize pointers to nullptr and check before dereferencing.

Remember: raw pointers don't express ownership clearly (smart pointers solve this).

49 / 52

Best practices
1. Liskov Substitution Principle (LSP): Derived classes should be able to replace base

classes without affecting the correctness of the program. This principle helps ensure that
inheritance is properly applied. If a derived class violates the base class's behavior or
expectations, consider rethinking the inheritance relationship.

2. Favor loose coupling: ensure that classes are not overly dependent on each other. Loose
coupling makes the code more flexible and easier to change.

3. Minimize dependencies: keep class dependencies to a minimum. Use forward declarations
and limit the inclusion of headers to reduce compile times and dependencies.

4. Encapsulation: always keep data members private or protected, and provide access through
getter and setter methods if necessary. This maintains control over how the data is accessed
and modified.

50 / 52

Some advice

The general design of code typically follows a top-down approach. You start from the final
objective and identify the tasks required to achieve that objective.

However, the actual programming process follows a bottom-up approach. Each basic task of
your code or a set of closely related tasks should be encapsulated in a class, and you should
test these components separately.

After verifying the individual components, you can then compose them into a class or set of
classes that implement your final objective. Whenever possible, aim to create components
that can be reused and avoid code duplication.

51 / 52

 Functions.
Templates and generic programming

52 / 52

	Page 1
	Lecture 04
	Inheritance and polymorphism in C++.
	Advanced Programming - SISSA, UniTS, 2025-2026
	Pasquale Claudio Africa
	21 Oct 2025

	Page 2
	Outline

	Page 3
	Class collaborations

	Page 4
	Relationships between classes (1/2)

	Page 5
	Relationships between classes (2/2)

	Page 6
	Association (1/3)

	Page 7
	Association (2/3)

	Page 8
	Association (3/3)

	Page 9
	Aggregation

	Page 10
	Composition

	Page 11
	Views (proxies)

	Page 12
	Inheritance

	Page 13
	Inheritance
	Example

	Page 14
	Inheritance in C++ (1/2)

	Page 15
	Inheritance in C++ (2/2)

	Page 16
	Inheritance and access control (1/3)

	Page 17
	Inheritance and access control (2/3)

	Page 18
	Inheritance and access control (3/3)

	Page 19
	Construction of a derived class

	Page 20
	Delegating constructor

	Page 21
	Inheriting constructors

	Page 22
	Destruction of a derived class

	Page 23
	Multiple inheritance

	Page 24
	Dynamic (runtime) polymorphism

	Page 25
	Polymorphism

	Page 26
	"is-a" relationship

	Page 27
	Function overriding (1/4)
	⚠️ This is not to be confused with function (or operator) overloading!

	Page 28
	Function overriding (2/4)

	Page 29
	Function overriding (3/4)

	Page 30
	Function overriding (4/4)
	⚠️ Polymorphism applies only when working with pointers or references.

	Page 31
	Preventing object slicing

	Page 32
	Covariant return types

	Page 33
	A (simple) factory of polygons

	Page 34
	Virtual destructors

	Page 35
	Is a virtual destructor in a derived class necessary?
	⚠️ Yes!

	Page 36
	Protected and private polymorphism

	Page 37
	Why protected and private inheritance?

	Page 38
	Selective inheritance

	Page 39
	Abstract classes

	Page 40
	Abstract classes

	Page 41
	What is an abstract class?

	Page 42
	A working example

	Page 43
	The final and override specifier

	Page 44
	Examples of final

	Page 45
	Examples of override

	Page 46
	RTTI and typeid

	Page 47
	Type checking with dynamic_cast

	Page 48
	Aggregation vs. composition with polymorphic objects

	Page 49
	Pointer or reference?
	Reference
	Pointer

	Page 50
	Best practices

	Page 51
	Some advice

	Page 52
	➡️ Functions. Templates and generic programming

