
Practical session 2

I don't like bugs, okay? They freak me out! - Raj in The Big
Bang Theory

Development Tools for Scientific Computing 2024/2025

Pasquale Claudio Africa, Dario Coscia

18 Feb 2025

1 / 10

Part 1: Background on Classifiers
A binary classifier is a type of machine learning model that categorizes data into one of two distinct
classes, and it is one of the most basic and commonly used tasks in scientific applications. For
example, in a spam detection system, the binary classifier classifies emails as either spam (1) or
not spam (0).

The menu of today includes:

1. Building a k-Nearest Neighbors (k-NN) classifier from scratch.

2. Setting up a collaborative and reproducible development environment on GitHub.

3. Creating and run tests to ensure that our k-NN classifier works correctly and meets quality
standards.

We will use the Ionosphere dataset which contains features obtained from radar signals focused
on the ionosphere layer of the Earth's atmosphere. The task is to determine whether the signal
shows the presence of some object, or just empty air.

2 / 10

https://archive.ics.uci.edu/dataset/52/ionosphere

Notes on k-NN Algorithm
We are given a set of data , where each data point

. The variable indicates the features which we use to classify (e.g. pixel
values, covariates, ...), while indicates the class label (e.g. cats or dogs). Our objective is to find
the class of a given new point .

Simple (expensive) Algorithm

1. Calculate Distance: Measure the distance between the input point and all other points in the
dataset.

2. Find Nearest Neighbors: Identify the k nearest points based on the calculated distances.

3. Classify: Assign the most common class label among the k nearest neighbors to the input
point.

3 / 10

Part 2: Set up repo and Python functions
Given the devtools_scicomp_project_2025 of the first Pratical Lecture from the main branch,
modify the README file and add your name, email address and the course you are enrolled in.
Add the change, amend the last commit and push.
Create a new branch titled knn_classifier from the main branch . This is the branch we will
work on. Do not use python libraries for today session, but only built in data types.

1. Set up the code:

Activate the conda environment devtools_scicomp and install PyYAML . Add it to
requirements.txt file.

Inside src/pyclassify/utils.py file implement a function called distance . This function
should:

Take two inputs: point1 and point2 , both of type list[float] .

Return the square of the Euclidean distance between point1 and point2 . You can
refer to the Euclidean distance formula for this or write some test cases. 4 / 10

https://en.wikipedia.org/wiki/Euclidean_distance#Higher_dimensions

Inside src/pyclassify/utils.py file implement a function called majority_vote . This
function should:

Take one input: neighbors , which is a list[int] of class labels.

Return the majority class among the neighbors.

Inside the src/pyclassify/ directory, create a file called classifier.py . Inside it, create a
Python class named kNN . The kNN class should:

Be initialized with an integer variable k , which specifies the number of nearest
neighbors.

Contain a method called _get_k_nearest_neighbors , which takes X , y (the dataset
values), and x (a new point to be classified). This method should return a list of y
values (labels) of the k nearest neighbors of x .

5 / 10

Inside the class kNN override the __call__ method. It takes two inputs: data , a tuple
containing X (the feature matrix) and y (the labels); new_points , a list of new points to be
classified. It should return a list of predicted classes for all points in new_points . The main
algorithm is as follows: for each point in new_points :

Call the _get_k_nearest_neighbors method to get the neighbors.

Perform majority voting using the majority_vote function from utils.py .

Store the predicted class for each point.

Finally, inside the src/pyclassify/__init__.py file import kNN

__all__ = [
 'kNN'
]

from .classifier import kNN

6 / 10

2. Set up the tests:

Inside test/test_.py file implement functions called test_distance ,
test_majority_vote . The test_distance function should test the distance

properties , while test_majority_vote should test that the algorithm implemented is
correct (for example given [1, 0, 0, 0] the algorithm should return 0).

Inside test/test_.py check the constructor of kNN (valid types).

3. Set up experiments:

Inside src/pyclassify/utils.py add the following function use to read yaml files:

def read_config(file):
 filepath = os.path.abspath(f'{file}.yaml')
 with open(filepath, 'r') as stream:
 kwargs = yaml.safe_load(stream)
 return kwargs

7 / 10

https://en.wikipedia.org/wiki/Euclidean_distance#Properties
https://en.wikipedia.org/wiki/Euclidean_distance#Properties

- Inside `shell/submit.sh` file write the following line of code, which downloads the [Ionosphere](https://archive.ics.uci.edu/dataset/52/ionosphere) dataset and put it a directory called `./data`. Explore the dataset and in `src/pyclassify/utils.py` create a function named `read_file` which reads the dataset file and returns the features and labels as separate lists.

URL="https://archive.ics.uci.edu/static/public/52/ionosphere.zip"
DEST_DIR="data"
ZIP_FILE="ionosphere.zip"
echo "Downloading ionosphere.zip from $URL..."
curl -o $ZIP_FILE $URL
Step 2: Create the 'data' directory if it doesn't exist
if [! -d "$DEST_DIR"]; then
 echo "Creating directory: $DEST_DIR"
 mkdir $DEST_DIR
fi
echo "Extracting $ZIP_FILE..."
unzip $ZIP_FILE
if [-f "ionosphere.data"]; then
 echo "Moving ionosphere.data to $DEST_DIR"
 mv ionosphere.data $DEST_DIR/
else
 exit 1
fi
echo "Cleaning up: Removing $ZIP_FILE"
rm $ZIP_FILE
echo "Download and extraction completed successfully."
rm Index ionosphere.names

8 / 10

Inside experiments/config.yaml insert the following:

k: 5
dataset: ./data/ionosphere.data

Inside scripts/run.py import kNN and read_config (remember the package is called
pyclassify). The run file needs to:

i. Read the parameters in the config.yaml file

ii. Divide with a percent split the dataset (no need to shuffle it is a plus) into test
and train respectively

iii. Perform a kNN classification on test data and print compute accuracy.

iv. Add, commit and push the changes using the commit message "practical2".

Note
Remember to install the package before running the run.py !

9 / 10

Solutions
The repository with the right structure and commits is reported here: GitHub repo

10 / 10

https://github.com/dario-coscia/devtools_scicomp_project_2025/tree/knn_classifier

	Page 1
	Practical session 2
	I don't like bugs, okay? They freak me out! - Raj in The Big Bang Theory
	Development Tools for Scientific Computing 2024/2025
	Pasquale Claudio Africa, Dario Coscia
	18 Feb 2025

	Page 2
	Part 1: Background on Classifiers

	Page 3
	Notes on k-NN Algorithm

	Page 4
	Part 2: Set up repo and Python functions

	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Solutions

