
Lecture 1

The build process, introduction to UNIX

Development Tools for Scientific Computing - SISSA, 2024-2025

Pasquale Claudio Africa, Dario Coscia

11 Feb 2025

1 / 57

Course overview

2 / 57

Practical info
Instructor: Pasquale Claudio Africa pafrica@sissa.it

Assistant: Dario Coscia dcoscia@sissa.it

Course material

GitHub : timetable, lecture notes, exercise sessions.

Books (see course syllabus):

i. Parallel and High Performance Programming with Python, Fabio Nelly.

ii. Python Parallel Programming Cookbook, Giancarlo Zaccone.

iii. High Performance Python: Practical Performant Programming for Humans, Micha
Gorelick & Ian Ozvald.

Internet (plenty of free or paid resources). 3 / 57

mailto:pafrica@sissa.it
mailto:dcoscia@sissa.it
https://github.com/pcafrica/devtools_scicomp

Practical info
Check out GitHub regularly for up-to-date timetable, rooms, lecture topics, and course material.

Course balance (approximate):

~24 hours.

Frontal lectures: 40%, practical sessions: 60%.

For practical sessions please bring your own laptop.

Questions?
Ask!

Engage with each other!

Office hours: send an email to book a session.

4 / 57

https://github.com/pcafrica/devtools_scicomp

Syllabus (1/2)

Part I - Introduction
Introduction to the UNIX shell.

Version control (Git) and dependency management (conda, Docker).

Hardware architectures and parallel computing paradigms.

Part II - Tools for scientific computing
Python ecosystem for data science and scientific computing.

Data types for efficient computing.

NumPy, SciPy, scikit-learn, visualization tools.

Libraries for deep learning (PyTorch)

Best practices for writing reliable code: error handling, unit testing, code profiling,
optimization, and software deployment.

5 / 57

Syllabus (2/2)

Part III - Tools for High-Performance Computing (HPC)
How to use HPC resources.

Libraries for parallel computing (Numba, Lightning).

Required skills
Former knowledge of programming fundamentals (syntax, data types, variables, control
structures, functions).

Prior experience with C, C++, Java, or Python, is recommended, but not mandatory.

6 / 57

Laptop configuration
Please bring your own laptop with a working UNIX/Linux environment, whether standalone, dual
boot, or virtualized.

For beginners: https://ubuntu.com/tutorials/install-ubuntu-desktop .

You can write code using any text editor (such as Emacs, Vim, or Nano), or an Integrated
Development Environment (IDE) (such as VSCode, Eclipse, or Spyder).

Requirements
Python 3. The presence of Jupyter and conda is recommended.

A C++ compiler installed with full support for C++17, such as GCC 10 or newer, or Clang 11 or
newer. The presence of CMake is recommended.

Docker Desktop . Please follow the instruction on the official guide and the post-installation
steps thoroughly. 7 / 57

https://ubuntu.com/tutorials/install-ubuntu-desktop
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/get-docker/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

Windows users
Windows Subsystem for Linux (WSL2) . Ubuntu version recommended, then follow Ubuntu-

specific instructions.

Virtual machine (such as VirtualBox).

(Expert users) Dual boot .

macOS users
Xcode : provides Clang.

Homebrew : provides GCC, Clang, Python 3.

Linux users
Install Python 3 and GCC using your package manager (such as apt, yum, pacman).

8 / 57

https://learn.microsoft.com/en-us/windows/wsl/install
https://www.virtualbox.org/
https://www.xda-developers.com/dual-boot-windows-11-linux/
https://developer.apple.com/xcode/
https://brew.sh/

Why should I learn development tools in the AI-
dominated era?

1. You can't really understand/modify/improve a text written in English, unless you are proficient
in English!

2. Career opportunities:
Coding opens doors to a diverse array of high-demand careers in technology and data-
driven sectors.

It cultivates critical thinking and problem-solving skills.

3. Artificial Intelligence (AI) and chatbots lack creativity!
They derive knowledge from historical data.

Innovation, idea generation, implementation of novel concepts through software and
technology remain a human prerogative (at least for now).

4. Understand how AI and chatbots work under the hood.
9 / 57

Popularity of programming languages

Source: https://pypl.github.io/PYPL.html

10 / 57

https://pypl.github.io/PYPL.html

Curated lists of awesome C++ and Python frameworks,
libraries, resources, and shiny things.

awesome-cpp
awesome-python
awesome-scientific-python
awesome-scientific-computing

11 / 57

https://github.com/fffaraz/awesome-cpp
https://github.com/vinta/awesome-python
https://github.com/rossant/awesome-scientific-python
https://github.com/nschloe/awesome-scientific-computing

Outline
1. The build process:

Compiled vs. interpreted languages.

Preprocessor, compiler, linker, loader.

2. Introduction to the UNIX shell:
What is a shell.

Variables.

Basic commands and scripting.

3. Shell scripting.

12 / 57

The build process:
Preprocessor, Compiler, Linker, Loader

13 / 57

Compiled vs. interpreted languages

14 / 57

The build process

15 / 57

Preprocessor
Handles directives and macros before compilation.

Originated for code reusability and organization.

Preprocessor directives

#include : Includes header files.

#define : Defines macros for code replacement.

#ifdef , #ifndef , #else , #endif : Conditional compilation.

#pragma : Compiler-specific directives.

Macros

Example: #define SQUARE(x) ((x) * (x))

Usage: int result = SQUARE(5); // Expands to: ((5) * (5))

16 / 57

Compiler
Translates source code into assembly/machine code.

Evolved with programming languages and instructions.

Compilation process

1. Lexical analysis: Tokenization.

2. Syntax analysis (parsing): Syntax tree.

3. Semantic analysis: Checking.

4. Code generation: Assembly/machine code.

5. Optimization: Efficiency improvement.

6. Output: Object files.

Common compiler options

-O : Optimization levels; -g : Debugging info; -std : C++ standard. 17 / 57

Linker
Combines object files into an executable.

Supports modular code.

Linking process

1. Symbol resolution: Match symbols.

2. Relocation: Adjust addresses.

3. Output: Executable.

4. Linker errors/warnings.

5. Example: g++ main.o helper.o -o my_program

Static vs. dynamic linking

Static: Larger binary, library inclusion.

Dynamic: Smaller binary, runtime library reference. 18 / 57

Loader
Loads executables for execution.

Tied to memory management evolution.

Loading process

1. Memory allocation: Reserve memory.

2. Relocation: Adjust addresses.

3. Initialization: Set up environment.

4. Execution: Start execution.

Dynamic linking at runtime

Inclusion of external libraries during execution.

Enhances flexibility.

19 / 57

Introduction to the UNIX shell

20 / 57

What is a shell?
From http://www.linfo.org/shell.html :

A shell is a program that provides the
traditional, text-only user interface for
Linux and other UNIX-like operating
systems. Its primary function is to read
commands that are typed into a console
[...] and then execute (i.e., run) them. The
term shell derives its name from the fact
that it is an outer layer of an operating
system. A shell is an interface between
the user and the internal parts of the OS
(at the very core of which is the kernel).

21 / 57

http://www.linfo.org/shell.html

What shells are available?
Bash stands for: Bourne Again Shell , a homage to its creator Stephen Bourne. It is the default

shell for most UNIX systems and Linux distributions. It is both a command interpreter and a
scripting language. The shell might be changed by simply typing its name and even the default
shell might be changed for all sessions.

macOS has replaced it with zsh , which is mostly compatible with Bash , since v10.15 Catalina.

Other shells available: tsh, ksh, csh, Dash, Fish, Windows PowerShell, ...

22 / 57

https://support.apple.com/en-us/HT208050

Variables and environmental variables
As shell is a program, it has its variables. You can assign a value to a variable with the equal sign
(no spaces!), for instance type A=1 . You can then retrieve its value using the dollar sign and
curly braces, for instance to display it the user may type echo ${A} .

Some variables can affect the way running processes will behave on a computer, these are called
environmental variables. For this reason, some variables are set by default, for instance to
display the user home directory type echo ${HOME} .

To set an environmental variable just prepend export , for instance export
PATH="/usr/sbin:$PATH" adds the folder /usr/sbin to the PATH environment variable. PATH
specifies a set of directories where executable programs are located.

23 / 57

Types of shell (login vs. non-login)
A login shell logs you into the system as a specific user (it requires username and password).
When you hit Ctrl+Alt+F1 to login into a virtual terminal you get after successful login: a
login shell (that is interactive).

A non-login shell is executed without logging in (it requires a current logged in user). When
you open a graphic terminal it is a non-login (interactive) shell.

24 / 57

Types of shell (interactive vs. non-interactive)
In an interactive shell (login or non-login) you can interactively type or interrupt commands.
For example a graphic terminal (non-login) or a virtual terminal (login). In an interactive shell
the prompt variable must be set ($PS1).

A non-interactive shell is usually run from an automated process. Input and output are not
exposed (unless explicitly handled by the calling process). This is normally a non-login shell,
because the calling user has logged in already. A shell running a script is always a non-
interactive shell (but the script can emulate an interactive shell by prompting the user to input
values).

25 / 57

The shell as a command line interpreter
When launching a terminal a UNIX system first launches the shell interpreter specified in the
SHELL environment variable. If SHELL is unset it uses the system default.

After having sourced the initialization files, the interpreter shows the prompt (defined by the
environment variable $PS1).

Initialization files are hidden files stored in the user's home directory, executed as soon as an
interactive shell is run.

26 / 57

Initialization files
Initialization files in a shell are scripts or configuration files that are executed or sourced when the
shell starts. These files are used to set up the shell environment, customize its behavior, and
define various settings that affect how the shell operates.

login:

/etc/profile , /etc/profile.d/* , ~/.profile for Bourne-compatible shells

~/.bash_profile (or ~/.bash_login) for Bash

/etc/zprofile , ~/.zprofile for zsh

/etc/csh.login , ~/.login for csh

non-login: /etc/bash.bashrc , ~/.bashrc for Bash

27 / 57

Initialization files

interactive:

/etc/profile , /etc/profile.d/* and ~/.profile

/etc/bash.bashrc , ~/.bashrc for Bash

non-interactive:

/etc/bash.bashrc for Bash (but most of the times the script begins with: [-z
"$PS1"] && return , i.e. don't do anything if it's a non-interactive shell).

depending on the shell, the file specified in $ENV (or $BASH_ENV) might be read.

28 / 57

Getting started
To get a little hang of the shell, let’s try a few simple commands:

echo : prints whatever you type at the shell prompt.

date : displays the current time and date.

clear : clean the terminal.

29 / 57

Basic shell commands (1/2)
pwd stands for Print working directory and it points to the current working directory, that is,

the directory that the shell is currently looking at. It’s also the default place where the shell
commands will look for data files.

ls stands for List and it lists the contents of a directory. ls usually starts out looking at our
home directory. This means if we print ls by itself, it will always print the contents of the
current directory.

cd stands for Change directory and changes the active directory to the path specified.

30 / 57

Basic shell commands (2/2)
cp stands for Copy and it moves one or more files or directories from one place to another.

We need to specify what we want to move, i.e., the source and where we want to move them,
i.e., the destination.

mv stands for Move and it moves one or more files or directories from one place to another.
We need to specify what we want to move, i.e., the source and where we want to move them,
i.e., the destination.

touch command is used to create new, empty files. It is also used to change the timestamps
on existing files and directories.

mkdir stands for Make directory and is used to make a new directory or a folder.

rm stands for Remove and it removes files or directories. By default, it does not remove
directories, unless you provide the flag rm -r (-r means recursively).

 Warning: Files removed via rm are lost forever, please be careful!

31 / 57

Shell scripts
Commands can be written in a script file, i.e. a text file that can be executed.

Remember that the first line of the script (the so-called shebang) tells the shell which interpreter
to use while executing the file. So, for example, if your script starts with #!/bin/bash it will be run
by Bash , if is starts with #!/usr/bin/env python it will be run by Python .

To run your brand new script you may need to change the access permissions of the file. To make
a file executable run

chmod +x script_file

32 / 57

Not all commands are equals
When executing a command, like ls a subprocess is created. A subprocess inherits all the
environment variables from the parent process, executes the command and returns the control to
the calling process.

A subprocess cannot change the state of the calling process.

The command source script_file executes the commands contained in script_file as if
they were typed directly on the terminal. It is only used on scripts that have to change some
environmental variables or define aliases or function. Typing . script_file does the same.

If the environment should not be altered, use ./script_file , instead.

33 / 57

Built-in commands
Some commands, like cd are executed directly by the shell, without creating a subprocess.

Indeed it would be impossible to have cd as a regular command!

The reason is: a subprocess cannot change the state of the calling process, whereas cd needs
to change the value of the environmental variable PWD (that contains the name of the current
working directory).

34 / 57

Other commands
In general a command can refer to:

A builtin command.

An executable.

A function.

The shell looks for executables with a given name within directories specified in the environment
variable PATH , whereas aliases and functions are usually sourced by the .bashrc file (or
equivalent).

To check what command_name is: type command_name .

To check its location: which command_name .

35 / 57

A warning about filenames
 In order to live happily and without worries, don't use spaces nor accented characters in

filenames!

Space characters in file names should be forbidden by law! The space is used as separation
character, having it in a file name makes things a lot more complicated in any script (not just shell
scripts).

Use underscores (snake case): my_wonderful_file_name , or uppercase characters (camel
case): myWonderfulFileName , or hyphens: my-wonderful-file-name , or a mixture:
myWonderful_file-name , instead.

But not my wonderful file name . It is not wonderful at all if it has to be parsed in a script.

36 / 57

More commands
cat stands for Concatenate and it reads a file and outputs its content. It can read any

number of files, and hence the name concatenate.

wc is short for Word count. It reads a list of files and generates one or more of the following
statistics: newline count, word count, and byte count.

grep stands for Global regular expression print. It searches for lines with a given string or
looks for a pattern in a given input stream.

head shows the first line(s) of a file.

tail shows the last line(s) of a file.

file reads the files specified and performs a series of tests in attempt to classify them by
type.

37 / 57

Redirection, pipelines and filters
We can add operators between commands in order to chain them together.

The pipe operator | , forwards the output of one command to another. E.g., cat
/etc/passwd | grep my_username checks system information about "my_username".

The redirect operator > sends the standard output of one command to a file. E.g., ls >
files-in-this-folder.txt saves a file with the list of files.

The append operator >> appends the output of one command to a file.

The operator &> sends the standard output and the standard error to file.

&& pipe is activated only if the return status of the first command is 0. It is used to chain
commands together: e.g., sudo apt update && sudo apt upgrade

|| pipe is activated only if the return status of first command is different from 0.

; is a way to execute to commands regardless of the output status.

$? is a variable containing the output status of the last command.
38 / 57

Advanced commands
tr stands for translate. It supports a range of transformations including uppercase to

lowercase, squeezing repeating characters, deleting specific characters, and basic find and
replace. For instance:

echo "Welcome to Advanced Programming!" | tr [a-z] [A-Z] converts all characters
to upper case.

echo -e "A;B;c\n1,2;1,4;1,8" | tr "," "." | tr ";" "," replaces commas with
dots and semi-colons with commas.

echo "My ID is 73535" | tr -d [:digit:] deletes all the digits from the string.

39 / 57

Advanced commands
sed stands for stream editor and it can perform lots of functions on file like searching, find

and replace, insertion or deletion. We give just an hint of its true power
echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/" replaces

the first occurrence of "UNIX" with "Linux".

echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/2" replaces
the second occurrence of "UNIX" with "Linux".

echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/g" replaces
all occurrencies of "UNIX" with "Linux".

echo -e "ABC\nabc" | sed "/abc/d" delete lines matching "abc".

echo -e "1\n2\n3\n4\n5\n6\n7\n8" | sed "3,6d" delete lines from 3 to 6.

40 / 57

Advanced commands
cut is a command for cutting out the sections from each line of files and writing the result to

standard output.
cut -b 1-3,7- state.txt cut bytes (-b) from 1 to 3 and from 7 to end of the line

echo -e "A,B,C\n1.22,1.2,3\n5,6,7\n9.99999,0,0" | cut -d "," -f 1 get the first
column of a CSV (-d specifies the column delimiter, -f n specifies to pick the -th
column from each line)

find is used to find files in specified directories that meet certain conditions. For example:
find . -type d -name "*lib*" find all directories (not files) starting from the current one

(.) whose name contain "lib".

locate is less powerful than find but much faster since it relies on a database that is
updated on a daily base or manually using the command updatedb . For example: locate -
i foo finds all files or directories whose name contains foo ignoring case.

41 / 57

Quotes
Double quotes may be used to identify a string where the variables are interpreted. Single quotes
identify a string where variables are not interpreted. Check the output of the following commands

a=yes
echo "$a"
echo '$a'

The output of a command can be converted into a string and assigned to a variable for later reuse:

list=`ls -l` # Or, equivalently:
list=$(ls -l)

42 / 57

Processes
Run a command in background: ./my_command &

Ctrl-Z suspends the current subprocess.

jobs lists all subprocesses running in the background in the terminal.

bg %n reactivates the -th subprocess and sends it to the background.

fg %n brings the -th subprocess back to the foreground.

Ctrl-C terminates the subprocess in the foreground (when not trapped).

kill pid sends termination signal to the subprocess with id pid . You can get a list of the
most computationally expensive processes with top and a complete list with ps aux
(usually ps aux is filtered through a pipe with grep)

All subprocesses in the background of the terminal are terminated when the terminal is closed
(unless launched with nohup , but that is another story...)

43 / 57

How to get help
Most commands provide a -h or --help flag to print a short help information:

find -h

man command prints the documentation manual for command.

There is also an info facility that sometimes provides more information: info command .

44 / 57

Shell scripting

45 / 57

Functions
A function in a shell is a block of reusable code that you can define and call throughout your
script. Functions are useful for organizing complex scripts and avoiding repetition. The general
syntax for defining a function is:

function_name() {
 # Commands to be executed.
}

Example:

greet() {
 echo "Hello, $1!"
}

In this example, greet is a function that takes one argument and echoes a greeting message.

46 / 57

Input arguments in a script or in a function
$0 : The name of the script/function itself.

$1 , $2 , $3 , etc.: The first, second, third (and so on) argument passed to the
script/function.

$# : The number of arguments passed.

$@ : The list of all the arguments passed as a single string.

$* : All the arguments as a single word (not often used).

47 / 57

Writing and running shell scripts
A shell script is simply a file containing a sequence of commands. It starts with a shebang (#!)
that tells the system which interpreter to use.

Example:

#!/bin/bash
echo "Hello, World!"

Make the script executable and run it:

chmod +x my_script.sh
./my_script.sh

48 / 57

Variables and user input
Shell variables store data and can be set as follows:

name="Alice"
echo "Hello, $name!"

Reading user input:

echo "Enter your name:"
read user_name
echo "Welcome, ${user_name}!"

49 / 57

Conditional statements: if

#!/bin/bash
echo "Enter a number:"
read num

if [$num -gt 10]; then
 echo "Number is greater than 10."
else
 echo "Number is 10 or less."
fi

Bash conditional expressions
POSIX shell cheat sheet

50 / 57

https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html
https://steinbaugh.com/posts/posix.html

Conditional statements: case

echo "Choose an option: start, stop, restart"
read action

case $action in
 start) echo "Starting service...";;
 stop) echo "Stopping service...";;
 restart) echo "Restarting service...";;
 *) echo "Invalid option";;
esac

51 / 57

Loops (for , while)

for loop:

for i in 1 2 3 4 5
do
 echo "Iteration $i"
done

while loop:

count=1
while [$count -le 5]
do
 echo "Count: $count"
 ((count++))
done

52 / 57

Loops (until)

until loop (runs until condition becomes true):

num=0
until [$num -eq 3]
do
 echo "Number: $num"
 ((num++))
done

53 / 57

Error handling and debugging
set -e : Exit script on error.

set -x : Enable debugging (prints each command before execution).

trap : Catch errors and execute custom actions.

Example:

trap 'echo "An error occurred!"' ERR

function cleanup() { ... }
trap cleanup EXIT

set -e

mkdir my_directory
cd my_directory
rm nonexistent_file # This will trigger the trap.

54 / 57

Parsing command-line arguments
Using $1 , $2 , etc. to read input:

echo "First argument: $1"
echo "Second argument: $2"

Scripts share the same syntax as functions for parsing arguments.

More advanced argument handling with getopts :

while getopts "u:p:" opt; do
 case $opt in
 u) username=$OPTARG ;;
 p) password=$OPTARG ;;
 *) echo "Invalid option" ;;
 esac
done

echo "User: $username, Password: $password"

55 / 57

Functions in shell scripts
#!/bin/bash

my_function() {
 echo "Function name: $0"
 echo "First argument: $1"
 echo "Second argument: $2"
 echo "All arguments (\$@): $@" # As separate strings.
 echo "All arguments (\$*): $*" # As a single string.
 echo "Number of arguments: $#"
}

my_function "Alice" "Bob" "Charlie"

56 / 57

 Introduction to git

57 / 57

	Page 1
	Lecture 1
	The build process, introduction to UNIX
	Development Tools for Scientific Computing - SISSA, 2024-2025
	Pasquale Claudio Africa, Dario Coscia
	11 Feb 2025

	Page 2
	Course overview

	Page 3
	Practical info
	Course material

	Page 4
	Practical info
	Questions?

	Page 5
	Syllabus (1/2)
	Part I - Introduction
	Part II - Tools for scientific computing

	Page 6
	Syllabus (2/2)
	Part III - Tools for High-Performance Computing (HPC)

	Required skills

	Page 7
	Laptop configuration
	Requirements

	Page 8
	Windows users
	macOS users
	Linux users

	Page 9
	Why should I learn development tools in the AI-dominated era?

	Page 10
	Popularity of programming languages

	Page 11
	Curated lists of awesome C++ and Python frameworks, libraries, resources, and shiny things.
	awesome-cpp
	awesome-python
	awesome-scientific-python
	awesome-scientific-computing

	Page 12
	Outline

	Page 13
	The build process: Preprocessor, Compiler, Linker, Loader

	Page 14
	Compiled vs. interpreted languages

	Page 15
	The build process

	Page 16
	Preprocessor
	Preprocessor directives
	Macros

	Page 17
	Compiler
	Compilation process
	Common compiler options

	Page 18
	Linker
	Linking process
	Static vs. dynamic linking

	Page 19
	Loader
	Loading process
	Dynamic linking at runtime

	Page 20
	Introduction to the UNIX shell

	Page 21
	What is a shell?

	Page 22
	What shells are available?

	Page 23
	Variables and environmental variables

	Page 24
	Types of shell (login vs. non-login)

	Page 25
	Types of shell (interactive vs. non-interactive)

	Page 26
	The shell as a command line interpreter

	Page 27
	Initialization files

	Page 28
	Initialization files

	Page 29
	Getting started

	Page 30
	Basic shell commands (1/2)

	Page 31
	Basic shell commands (2/2)

	Page 32
	Shell scripts

	Page 33
	Not all commands are equals

	Page 34
	Built-in commands

	Page 35
	Other commands

	Page 36
	A warning about filenames

	Page 37
	More commands

	Page 38
	Redirection, pipelines and filters

	Page 39
	Advanced commands

	Page 40
	Advanced commands

	Page 41
	Advanced commands

	Page 42
	Quotes

	Page 43
	Processes

	Page 44
	How to get help

	Page 45
	Shell scripting

	Page 46
	Functions

	Page 47
	Input arguments in a script or in a function

	Page 48
	Writing and running shell scripts

	Page 49
	Variables and user input
	Reading user input:

	Page 50
	Conditional statements: if

	Page 51
	Conditional statements: case

	Page 52
	Loops (for, while)
	for loop:
	while loop:

	Page 53
	Loops (until)
	until loop (runs until condition becomes true):

	Page 54
	Error handling and debugging

	Page 55
	Parsing command-line arguments

	Page 56
	Functions in shell scripts

	Page 57
	➡️ Introduction to git

