
Lecture 2

Introduction to git

Development Tools for Scientific Computing - SISSA, 2024-2025

Pasquale Claudio Africa, Dario Coscia

11 Feb 2025

1 / 41

Outline
1. Introduction to git :

Local vs. remote.

Branching and collaborative working.

Sync the course material with your computer.

2. git internals.

3. Hands on git .

2 / 41

Introduction to git

3 / 41

Version control
Version control, also known as source control, is the practice of tracking and managing changes to
software code. Version control systems are software tools that help software teams manage
changes to source code over time.

git is a free and open-source version control system, originally created by Linus Torvalds in
2005. Unlike older centralized version control systems such as SVN and CVS, Git is distributed:
every developer has the full history of their code repository locally. This makes the initial clone of
the repository slower, but subsequent operations dramatically faster.

4 / 41

How does git work?
1. Create (or find) a repository with a git hosting

tool (an online platform that hosts you project,
like GitHub or Gitlab).

2. git clone (download) the repository.

3. git add a file to your local repo.

4. git commit (save) the changes, this is a local
action, the remote repository (the one in the
cloud) is still unchanged.

5. git push your changes, this action
synchronizes your version with the one in the
hosting platform.

5 / 41

https://github.com/
https://gitlab.com/

How does git work? (Collaborative)
If you and your teammates work on different files the workflow is the same as before, you just
have to remember to pull the changes that your colleagues made.

If you have to work on the same files, the best practice is to create a new branch , which is a
particular version of the code that branches form the main one. After you have finished working on
your feature you merge the branch into the main.

6 / 41

Other useful git commands
git diff shows the differences between your code and the last commit.

git status lists the status of all the files (e.g. which files have been changed, which are
new, which are deleted and which have been added).

git log shows the history of commits.

git checkout switches to a specific commit or brach.

git stash temporarily hides all the modified tracked files.

An excellent visual cheatsheet can be found here .

7 / 41

https://ndpsoftware.com/git-cheatsheet.html

SSH authentication
1. Sign up for a GitHub account.

2. Create a SSH key .

3. Add it to your account .

4. Configure your machine:

git config --global user.name "Name Surname"
git config --global user.email "name.surname@email.com"

See here for more details on SSH authentication.

8 / 41

https://github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process

The course repository
Clone the course repository:

git clone git@github.com:pcafrica/devtools_scicomp.git

Before every lecture, download the latest updates by running:

git pull origin main

from inside the cloned folder.

9 / 41

Advanced git usage

10 / 41

Working with branches (1/4)
Branching is a core git feature that allows developers to work on different tasks simultaneously
without affecting the main codebase. Branches enable parallel development and help in organizing
features, bug fixes, and experimental changes. A branch should be created for each new feature
or fix, ensuring an isolated development environment.

Creating and switching branches

Create a new branch.
git branch feature-branch

Switch to a branch.
git checkout feature-branch

Create and switch to a new branch in one step.
git checkout -b new-feature

11 / 41

Working with branches: merging vs. rebasing (2/4)

12 / 41

Working with branches (3/4)

Merging branches
Merging integrates changes from one branch into another. This is commonly used when a feature
is complete and needs to be incorporated into the main development line.

Merge a branch into the current branch.
git merge feature-branch

Merge while keeping history.
git merge --no-ff feature-branch

Using --no-ff ensures a merge commit is created, maintaining the historical context of the
branch.

13 / 41

Working with branches (4/4)

Rebasing
Rebasing is an alternative to merging that results in a cleaner, linear commit history.

Rebase the current branch onto main.
git rebase main

Interactive rebase (modify, squash, reorder commits).
git rebase -i HEAD~3

During an interactive rebase, you can squash commits, edit messages, or reorder commits to
keep the history tidy.

14 / 41

Managing commits (1/2)

Undoing changes

Reset staged files.
git reset HEAD <file>

Undo last commit (keep changes staged).
git reset --soft HEAD~1

Undo last commit (discard changes).
git reset --hard HEAD~1

Be cautious with --hard as it discards changes permanently.

15 / 41

Managing commits (2/2)

Amending commits

Edit the last commit message.
git commit --amend -m "New commit message"

Amend the last commit by adding new files/changes.
git add <file>
git commit --amend --no-edit

16 / 41

Working with remote repositories
Remote repositories facilitate collaboration by allowing multiple developers to work on a shared
codebase.

Pushing and pulling changes

Push changes to a remote branch.
git push origin feature-branch

Pull latest changes from remote.
git pull origin main

Force pushing (not recommended)

Force push (overwrites remote history).
git push --force

Force push with safety (does not overwrite if history diverged).
git push --force-with-lease 17 / 41

Stashing changes
When switching branches or pulling updates, you may need to temporarily save uncommitted
changes.

Save uncommitted changes.
git stash

Apply the last stashed changes.
git stash apply

Apply and remove the last stash.
git stash pop

List all stashed changes.
git stash list

Stash with a message.
git stash save "WIP: fixing bug"

18 / 41

Working with tags
Tags mark specific commits, often for versioning releases.

Create an annotated tag.
git tag -a v1.0 -m "Version 1.0 release"

List tags.
git tag

Push tags to remote.
git push origin --tags

19 / 41

Debugging with git

Viewing commit history

Pretty log format.
git log --oneline --graph --decorate --all

Show commit differences.
git log -p

Finding bugs

Show line-by-line changes in a file.
git blame <file>

Find when a bug was introduced.
git bisect start
git bisect bad # Mark current commit as bad.
git bisect good <commit>

20 / 41

Cleaning up
Remove untracked files.
git clean -f

Remove untracked directories.
git clean -fd

Remove all local branches except main.
git branch | grep -v "main" | xargs git branch -D

Advanced configuration
Set global ignore file.
git config --global core.excludesfile ~/.gitignore_global

Set default editor.
git config --global core.editor "vim"

21 / 41

Working with submodules
Add a submodule.
git submodule add <repository-url> path/to/submodule

Clone a repo with submodules.
git clone --recurse-submodules <repo-url>

Update submodules.
git submodule update --init --recursive

Automating git with aliases

Set up an alias for a pretty log view
git config --global alias.lg "log --oneline --graph --decorate --all"

Set up an alias for rebasing interactively
git config --global alias.ri "rebase -i"

22 / 41

git internals

23 / 41

git objects (1/2)
Git is fundamentally a content-addressable filesystem with a unique way of storing data. Instead of
tracking files and directories directly, Git stores four main types of objects:

Blobs (Binary Large Objects)

Store file contents (not filenames or metadata).

Identified by a SHA-1 hash.

Example: Running git hash-object -w myfile.txt creates a blob.

Trees

Store file names and directory structure.

A tree object points to multiple blobs (files) and other trees (subdirectories).

Example: Running git ls-tree HEAD shows the tree for the latest commit.

24 / 41

git objects (2/2)
Git is fundamentally a content-addressable filesystem with a unique way of storing data. Instead of
tracking files and directories directly, Git stores four main types of objects:

Commits

Contain metadata (author, timestamp, message) and point to a tree.

Link to a parent commit, forming a history.

Example: Running git cat-file -p HEAD reveals a commit's details.

Tags

Used to label specific commits (e.g., software releases).

Lightweight (pointer to a commit) or Annotated (stores extra metadata).

Example: git tag -a v1.0 -m "First release" creates an annotated tag.

25 / 41

The .git directory structure

.git/
│-- objects/ # Stores commits, trees, and blobs.
│-- refs/ # Stores pointers to branches and tags.
│-- logs/ # Records operations history.
│-- config # Repository settings.
│-- index # Changes that have been staged but not yet committed.
│-- HEAD # Points to the current branch.

Key commands to explore:
- ls .git/objects/ : Shows stored git objects.
- cat .git/HEAD : Shows which branch you are currently on.
- git reflog : Uses logs to recover lost commits.

26 / 41

How git handles diffs and compression

Delta compression:

Git doesn’t store multiple versions of a file. Instead, it stores the differences (deltas) to
save space.

git gc (garbage collection) optimizes storage by compressing deltas.

Packfiles (.pack and .idx files in .git/objects/pack/):

Large repositories use packfiles to group objects and speed up cloning/pulling.

git verify-pack -v .git/objects/pack/*.idx1 shows compressed object details.

27 / 41

Plumbing vs. porcelain commands
Porcelain (user-friendly) Plumbing (internal mechanisms)

git commit git hash-object

git branch git update-ref

git log git cat-file

git checkout git read-tree

28 / 41

Manually creating a commit
Challenge: Instead of using git commit, you may manually create a commit using plumbing
commands:

echo "Hello, git internals" > file.txt
git init
git add file.txt
git hash-object -w file.txt # Store the blob manually.
git write-tree # Create a tree object.
git commit-tree TREE_HASH -p PARENT_HASH -m "Manual commit" # Create a commit manually.
git update-ref refs/heads/main COMMIT_HASH

29 / 41

Hands on git

30 / 41

Collaborative git
git flow with forking is a lightweight, branch-based workflow designed for fast and continuous

collaboration. It works well for both team projects and open-source contributions. When
contributing to repositories you don't have direct access to (e.g., open-source projects), forking is
required.

31 / 41

Cloning vs. forking
Cloning: Used when you have write access to a repository.

Forking: Used when contributing to a repository you don’t have write access to.

How to fork a repository
1. Navigate to the repository on GitHub.

2. Click the Fork button (top right).

3. This creates a copy of the repository under your GitHub account.

4. Clone the forked repository to your local machine:

git clone git@github.com:your-username/repo-name.git

5. Add the original repository (upstream) as a remote:

git remote add upstream git@github.com:original-owner/repo-name.git

32 / 41

git flow with forking (1/4)
Once you have forked a repository, follow these steps to contribute:

Step 1: create a branch
Never work directly on main . Instead, create a new feature branch:

git checkout -b feature-branch

Step 2: make and commit changes
Write your code and commit frequently:

git add .
git commit -m "Added feature X"

33 / 41

git flow with forking (2/4)

Step 3: push to your fork
Push the branch to your fork (not the upstream repo):

git push origin feature-branch

Step 4: open a pull request (PR)
1. Navigate to the original repository on GitHub.

2. Click Compare & pull request.

3. Select your branch and explain the changes.

4. Request reviews from maintainers.

34 / 41

git flow with forking (3/4)

Step 5: keep your fork updated
Before making further changes, always sync your fork with the upstream repository:

git checkout main
git pull upstream main
git push origin main

35 / 41

git flow with forking (4/4)

Step 6: merge and delete the branch
Once the PR is approved and merged:

1. Delete your local branch:

git branch -d feature-branch

2. Delete it on GitHub:

git push origin --delete feature-branch

36 / 41

Exercise 1: your first pull request
1. Fork the course repo.

2. Create a branch.

3. Make some changes, commit and push them to your fork.

4. Open a PR on the original repo.

37 / 41

Exercise 2: collaborative file management (1/3)
1. Form groups of 2-3 members.

2. Designate one member to create a new repository (visit https://github.com/ and click the +
button in the top right corner), and ensure everyone clones it.

3. In a sequential manner, each group member should create a file with a distinct name and
push it to the online repository while the remaining members pull the changes.

4. Repeat step 3, but this time, each participant should modify a different file than the ones
modified by the other members of the group.

38 / 41

https://github.com/

Exercise 2: collaborative file management (2/3)
Now, let's work on the same file, main.py . Each person should create a hello world main.py
that includes a personalized greeting with your name. To prevent conflicts, follow these steps:

1. Create a unique branch using the command: git checkout -b [new_branch] .

2. Develop your code and push your branch to the online repository: git push origin
[new_branch] .

3. Once everyone has finished their work, merge your branch into the main branch using the
following commands:

git checkout main
git pull origin main
git merge [new_branch]
git push origin main

39 / 41

How to deal with git conflicts
The first person to complete this process will experience no issues. However, subsequent
participants may encounter merge conflicts.

git will mark the conflicting sections in the file. You'll see these sections surrounded by
<<<<<<< , ======= , and >>>>>>> markers.

Carefully review the conflicting sections and decide which changes to keep. Remove the conflict
markers (<<<<<<< , ======= , >>>>>>>) and make the necessary adjustments to the code to
integrate both sets of changes correctly.

After resolving the conflict, commit your changes and push your resolution to the repository.

40 / 41

 Python for scientific computing. CI/CD

41 / 41

	Page 1
	Lecture 2
	Introduction to git
	Development Tools for Scientific Computing - SISSA, 2024-2025
	Pasquale Claudio Africa, Dario Coscia
	11 Feb 2025

	Page 2
	Outline

	Page 3
	Introduction to git

	Page 4
	Version control

	Page 5
	How does git work?

	Page 6
	How does git work? (Collaborative)

	Page 7
	Other useful git commands

	Page 8
	SSH authentication

	Page 9
	The course repository

	Page 10
	Advanced git usage

	Page 11
	Working with branches (1/4)
	Creating and switching branches

	Page 12
	Working with branches: merging vs. rebasing (2/4)

	Page 13
	Working with branches (3/4)
	Merging branches

	Page 14
	Working with branches (4/4)
	Rebasing

	Page 15
	Managing commits (1/2)
	Undoing changes

	Page 16
	Managing commits (2/2)
	Amending commits

	Page 17
	Working with remote repositories
	Pushing and pulling changes
	Force pushing (not recommended)

	Page 18
	Stashing changes

	Page 19
	Working with tags

	Page 20
	Debugging with git
	Viewing commit history
	Finding bugs

	Page 21
	Cleaning up
	Advanced configuration

	Page 22
	Working with submodules
	Automating git with aliases

	Page 23
	git internals

	Page 24
	git objects (1/2)

	Page 25
	git objects (2/2)

	Page 26
	The .git directory structure

	Page 27
	How git handles diffs and compression

	Page 28
	Plumbing vs. porcelain commands

	Page 29
	Manually creating a commit

	Page 30
	Hands on git

	Page 31
	Collaborative git

	Page 32
	Cloning vs. forking
	How to fork a repository

	Page 33
	git flow with forking (1/4)
	Step 1: create a branch
	Step 2: make and commit changes

	Page 34
	git flow with forking (2/4)
	Step 3: push to your fork
	Step 4: open a pull request (PR)

	Page 35
	git flow with forking (3/4)
	Step 5: keep your fork updated

	Page 36
	git flow with forking (4/4)
	Step 6: merge and delete the branch

	Page 37
	Exercise 1: your first pull request

	Page 38
	Exercise 2: collaborative file management (1/3)

	Page 39
	Exercise 2: collaborative file management (2/3)

	Page 40
	How to deal with git conflicts

	Page 41
	➡️ Python for scientific computing. CI/CD

