
Lecture 01

A day in the life of a software developer

High Performance Computing for Data Science - SISSA, 2023-2024
Pasquale Claudio Africa, Konstantin Karchev

22 Apr 2024

1 / 58

Course overview

2 / 58

Practical info
Instructor: Pasquale Claudio Africa pafrica@sissa.it

Assistant: Konstantin Karchev kkarchev@sissa.it

Course material
GitHub : timetable, lecture notes and slides, exercise sessions.

Books (see course syllabus):

i. Parallel and High Performance Programming with Python, Fabio Nelly.

ii. Python Parallel Programming Cookbook, Giancarlo Zaccone.

iii. High Performance Python: Practical Performant Programming for Humans, Micha
Gorelick & Ian Ozvald.

Internet (plenty of free or paid resources).
3 / 58

mailto:pafrica@sissa.it
mailto:kkarchev@sissa.it
https://github.com/pcafrica/hpc_for_data_science_2023-2024

Practical info
Lectures at SISSA, room 003. Check out - GitHub regularly for up-to-date timetable, lecture
topics, and course material.

Course balance (approximate):

16 hours (2CFUs).

Frontal lectures: 50%, practical sessions: 50%.

For practical sessions please bring your own laptop.

Questions?
Use Discussions on GitHub.

Engage with each other!

Office hours: send an email to book a session.
4 / 58

https://github.com/pcafrica/hpc_for_data_science_2023-2024
https://github.com/pcafrica/hpc_for_data_science_2023-2024/discussions

Objectives and expectations
Part 1

The UNIX shell and the software build process. Best practices for writing reliable code:
error handling, unit testing, and software documentation.

Part 2:
Scientific data and efficient computing, code profiling and optimization.

Part 3:
Parallel and high-performance computing.

Required skills
Former knowledge of programming fundamentals (syntax, data types, variables, control
structures, functions).

Prior experience with C, C++, Java, or Python, is recommended, not mandatory.
5 / 58

Laptop configuration
Please bring your own laptop with a working UNIX/Linux environment, whether standalone, dual
boot, or virtualized.

For beginners: https://ubuntu.com/tutorials/install-ubuntu-desktop .

You can write code using any text editor (such as Emacs, Vim, or Nano), or an Integrated
Development Environment (IDE) (such as VSCode, Eclipse, or Spyder).

Requirements
Python 3. The presence of Jupyter and conda is recommended.

A C++ compiler installed with full support for C++17, such as GCC 10 or newer, or Clang 11
or newer. The presence of CMake is recommended.

Docker Desktop . Please follow the instruction on the official guide and the post-installation
steps thoroughly.

Any recent Linux distribution such as Ubuntu 22 04 or Debian 11 or macOS system that
6 / 58

https://ubuntu.com/tutorials/install-ubuntu-desktop
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/get-docker/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

Windows users
Windows Subsystem for Linux (WSL2) . Ubuntu version recommended, then follow Ubuntu-

specific instructions.

Virtual machine (such as VirtualBox).

(Expert users) Dual boot .

macOS users
Xcode : provides Clang.

Homebrew : provides GCC, Clang, Python 3.

Linux users
Install Python 3 and GCC using your package manager (such as apt, yum, pacman).

7 / 58

https://learn.microsoft.com/en-us/windows/wsl/install
https://www.virtualbox.org/
https://www.xda-developers.com/dual-boot-windows-11-linux/
https://developer.apple.com/xcode/
https://brew.sh/

Popularity of programming languages

Source: https://pypl.github.io/PYPL.html 8 / 58

https://pypl.github.io/PYPL.html

Curated lists of awesome C++ and Python frameworks,
libraries, resources, and shiny things.

awesome-cpp

awesome-python

awesome-scientific-python

awesome-scientific-computing

9 / 58

https://github.com/fffaraz/awesome-cpp
https://github.com/vinta/awesome-python
https://github.com/rossant/awesome-scientific-python
https://github.com/nschloe/awesome-scientific-computing

Outline
1. The build process:

Compiled vs. interpreted languages.

Preprocessor, compiler, linker, loader.

2. Introduction to the UNIX shell:
What is a shell.

Variables.

Basic commands and scripting.

3. Introduction to git :
Local vs. remote.

Branching and collaborative working.

Sync the course material with your computer.

4. Exercises.
10 / 58

The build process:
Preprocessor, Compiler, Linker, Loader

11 / 58

Compiled language

Source file

Source file

Compiler

Compiler

Executable (Binary)

Executable (Binary)

Output

Output

Compile

Produces

Run

Interpreted language

Source file

Source file

Interpreter

Interpreter

Output

Output

Interpret

Produces

Compiled vs. interpreted languages

12 / 58

The build process
User Preprocessor Compiler Linker Executable Loader

Source file 1

Preprocess source file 1

Generate object file 1

Source file 2

Preprocess source file 2

Generate object file 2

...

Preprocess

Generate object file

Library 1

Library 2

...

Link object files
and libraries

Load (shared) libraries
Execute

13 / 58

Preprocessor
Handles directives and macros before compilation.

Originated for code reusability and organization.

Preprocessor directives

#include : Includes header files.

#define : Defines macros for code replacement.

#ifdef , #ifndef , #else , #endif : Conditional compilation.

#pragma : Compiler-specific directives.

Macros

Example: #define SQUARE(x) ((x) * (x))

Usage: int result = SQUARE(5); // Expands to: ((5) * (5))

14 / 58

Compiler
Translates source code into assembly/machine code.

Evolved with programming languages and instructions.

Compilation process

1. Lexical analysis: Tokenization.

2. Syntax analysis (parsing): Syntax tree.

3. Semantic analysis: Checking.

4. Code generation: Assembly/machine code.

5. Optimization: Efficiency improvement.

6. Output: Object files.

Common compiler options

-O : Optimization levels; -g : Debugging info; -std : C++ standard.
15 / 58

Linker
Combines object files into an executable.

Supports modular code.

Linking process

1. Symbol resolution: Match symbols.

2. Relocation: Adjust addresses.

3. Output: Executable.

4. Linker errors/warnings.

5. Example: g++ main.o helper.o -o my_program

Static vs. dynamic linking

Static: Larger binary, library inclusion.

Dynamic: Smaller binary, runtime library reference.
16 / 58

Loader
Loads executables for execution.

Tied to memory management evolution.

Loading process

1. Memory allocation: Reserve memory.

2. Relocation: Adjust addresses.

3. Initialization: Set up environment.

4. Execution: Start execution.

Dynamic linking at runtime

Inclusion of external libraries during execution.

Enhances flexibility.

17 / 58

Introduction to the UNIX shell

18 / 58

What is a shell?
From http://www.linfo.org/shell.html :

A shell is a program that provides the
traditional, text-only user interface for
Linux and other UNIX-like operating
systems. Its primary function is to read
commands that are typed into a console
[...] and then execute (i.e., run) them. The
term shell derives its name from the fact
that it is an outer layer of an operating
system. A shell is an interface between
the user and the internal parts of the OS
(at the very core of which is the kernel).

19 / 58

http://www.linfo.org/shell.html

What is Bash ?
Bash stands for: Bourne Again Shell , a homage to its creator Stephen Bourne. It is the default

shell for most UNIX systems and Linux distributions. It is both a command interpreter and a
scripting language. The shell might be changed by simply typing its name and even the default
shell might be changed for all sessions.

macOS has replaced it with zsh , which is mostly compatible with Bash , since v10.15 Catalina.

Other shells available: tsh, ksh, csh, Dash, Fish, Windows PowerShell, ...

20 / 58

https://support.apple.com/en-us/HT208050

Variables and environmental variables
As shell is a program, it has its variables. You can assign a value to a variable with the equal sign
(no spaces!), for instance type A=1 . You can then retrieve its value using the dollar sign and
curly braces, for instance to display it the user may type echo ${A} . Some variables can affect
the way running processes will behave on a computer, these are called environmental variables.
For this reason, some variables are set by default, for instance to display the user home directory
type echo ${HOME} . To set an environmental variable just prepend export , for instance
export PATH="/usr/sbin:$PATH" adds the folder /usr/sbin to the PATH environment variable.
PATH specifies a set of directories where executable programs are located.

21 / 58

Types of shell (login vs. non-login)
A login shell logs you into the system as a specific user (it requires username and password).
When you hit Ctrl+Alt+F1 to login into a virtual terminal you get after successful login: a
login shell (that is interactive).

A non-login shell is executed without logging in (it requires a current logged in user). When
you open a graphic terminal it is a non-login (interactive) shell.

22 / 58

Types of shell (interactive vs. non-interactive)
In an interactive shell (login or non-login) you can interactively type or interrupt commands.
For example a graphic terminal (non-login) or a virtual terminal (login). In an interactive shell
the prompt variable must be set ($PS1).

A non-interactive shell is usually run from an automated process. Input and output are not
exposed (unless explicitly handled by the calling process). This is normally a non-login shell,
because the calling user has logged in already. A shell running a script is always a non-
interactive shell (but the script can emulate an interactive shell by prompting the user to input
values).

23 / 58

Bash as a command line interpreter
When launching a terminal a UNIX system first launches the shell interpreter specified in the
SHELL environment variable. If SHELL is unset it uses the system default.

After having sourced the initialization files, the interpreter shows the prompt (defined by the
environment variable $PS1).

Initialization files are hidden files stored in the user's home directory, executed as soon as an
interactive shell is run.

24 / 58

Initialization files
Initialization files in a shell are scripts or configuration files that are executed or sourced when the
shell starts. These files are used to set up the shell environment, customize its behavior, and
define various settings that affect how the shell operates.

login:

/etc/profile , /etc/profile.d/* , ~/.profile for Bourne-compatible shells

~/.bash_profile (or ~/.bash_login) for Bash

/etc/zprofile , ~/.zprofile for zsh

/etc/csh.login , ~/.login for csh

non-login: /etc/bash.bashrc , ~/.bashrc for Bash

25 / 58

Initialization files
interactive:

/etc/profile , /etc/profile.d/* and ~/.profile

/etc/bash.bashrc , ~/.bashrc for Bash

non-interactive:

/etc/bash.bashrc for Bash (but most of the times the script begins with: [-z
"$PS1"] && return , i.e. don't do anything if it's a non-interactive shell).

depending on the shell, the file specified in $ENV (or $BASH_ENV) might be read.

26 / 58

Getting started
To get a little hang of the bash, let’s try a few simple commands:

echo : prints whatever you type at the shell prompt.

date : displays the current time and date.

clear : clean the terminal.

27 / 58

Basic Bash commands
pwd stands for Print working directory and it points to the current working directory, that is,

the directory that the shell is currently looking at. It’s also the default place where the shell
commands will look for data files.

ls stands for a List and it lists the contents of a directory. ls usually starts out looking at our
home directory. This means if we print ls by itself, it will always print the contents of the
current directory.

cd stands for Change directory and changes the active directory to the path specified.

28 / 58

Basic Bash commands
cp stands for Copy and it moves one or more files or directories from one place to another.

We need to specify what we want to move, i.e., the source and where we want to move them,
i.e., the destination.

mv stands for Move and it moves one or more files or directories from one place to another.
We need to specify what we want to move, i.e., the source and where we want to move them,
i.e., the destination.

touch command is used to create new, empty files. It is also used to change the timestamps
on existing files and directories.

mkdir stands for Make directory and is used to make a new directory or a folder.

rm stands for Remove and it removes files or directories. By default, it does not remove
directories, unless you provide the flag rm -r (-r means recursively).

 Warning: Files removed via rm are lost forever, please be careful!
29 / 58

Not all commands are equals
When executing a command, like ls a subprocess is created. A subprocess inherits all the
environment variables from the parent process, executes the command and returns the control to
the calling process.

A subprocess cannot change the state of the calling process.

The command source script_file executes the commands contained in script_file as if
they were typed directly on the terminal. It is only used on scripts that have to change some
environmental variables or define aliases or function. Typing . script_file does the same.

If the environment should not be altered, use ./script_file , instead.

30 / 58

Run a script
To run your brand new script you may need to change the access permissions of the file. To make
a file executable run

chmod +x script_file

Finally, remember that the first line of the script (the so-called shebang) tells the shell which
interpreter to use while executing the file. So, for example, if your script starts with #!/bin/bash it
will be run by Bash , if is starts with #!/usr/bin/env python it will be run by Python .

31 / 58

Built-in commands
Some commands, like cd are executed directly by the shell, without creating a subprocess.

Indeed it would be impossible the have cd as a regular command!

The reason is: a subprocess cannot change the state of the calling process, whereas cd needs
to change the value of the environmental variable PWD (that contains the name of the current
working directory).

32 / 58

Other commands
In general a command can refer to:

A builtin command.

An executable.

A function.

The shell looks for executables with a given name within directories specified in the environment
variable PATH , whereas aliases and functions are usually sourced by the .bashrc file (or
equivalent).

To check what command_name is: type command_name .

To check its location: which command_name .

33 / 58

A warning about filenames
 In order to live happily and without worries, don't use spaces nor accented characters in

filenames!

Space characters in file names should be forbidden by law! The space is used as separation
character, having it in a file name makes things a lot more complicated in any script (not just
Bash scripts).

Use underscores (snake case): my_wonderful_file_name , or uppercase characters (camel
case): myWonderfulFileName , or hyphens: my-wonderful-file-name , or a mixture:
myWonderful_file-name , instead.

But not my wonderful file name . It is not wonderful at all if it has to be parsed in a script.

34 / 58

More commands
cat stands for Concatenate and it reads a file and outputs its content. It can read any

number of files, and hence the name concatenate.

wc is short for Word count. It reads a list of files and generates one or more of the following
statistics: newline count, word count, and byte count.

grep stands for Global regular expression print. It searches for lines with a given string or
looks for a pattern in a given input stream.

head shows the first line(s) of a file.

tail shows the last line(s) of a file.

file reads the files specified and performs a series of tests in attempt to classify them by
type.

35 / 58

Redirection, pipelines and filters
We can add operators between commands in order to chain them together.

The pipe operator | , forwards the output of one command to another. E.g., cat
/etc/passwd | grep my_username checks system information about "my_username".

The redirect operator > sends the standard output of one command to a file. E.g., ls >
files-in-this-folder.txt saves a file with the list of files.

The append operator >> appends the output of one command to a file.

The operator &> sends the standard output and the standard error to file.

&& pipe is activated only if the return status of the first command is 0. It is used to chain
commands together: e.g., sudo apt update && sudo apt upgrade

|| pipe is activated only if the return status of first command is different from 0.

; is a way to execute to commands regardless of the output status.

$? is a variable containing the output status of the last command.
36 / 58

Advanced commands
tr stands for translate. It supports a range of transformations including uppercase to

lowercase, squeezing repeating characters, deleting specific characters, and basic find and
replace. For instance:

echo "Welcome to Advanced Programming!" | tr [a-z] [A-Z] converts all characters
to upper case.

echo -e "A;B;c\n1,2;1,4;1,8" | tr "," "." | tr ";" "," replaces commas with
dots and semi-colons with commas.

echo "My ID is 73535" | tr -d [:digit:] deletes all the digits from the string.

37 / 58

Advanced commands
sed stands for stream editor and it can perform lots of functions on file like searching, find

and replace, insertion or deletion. We give just an hint of its true power
echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/" replaces

the first occurrence of "UNIX" with "Linux".

echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/2" replaces
the second occurrence of "UNIX" with "Linux".

echo "UNIX is great OS. UNIX is open source." | sed "s/UNIX/Linux/g" replaces
all occurrencies of "UNIX" with "Linux".

echo -e "ABC\nabc" | sed "/abc/d" delete lines matching "abc".

echo -e "1\n2\n3\n4\n5\n6\n7\n8" | sed "3,6d" delete lines from 3 to 6.

38 / 58

Advanced commands
cut is a command for cutting out the sections from each line of files and writing the result to

standard output.

cut -b 1-3,7- state.txt cut bytes (-b) from 1 to 3 and from 7 to end of the line

echo -e "A,B,C\n1.22,1.2,3\n5,6,7\n9.99999,0,0" | cut -d "," -f 1 get the first
column of a CSV (-d specifies the column delimiter, -f n specifies to pick the -th
column from each line)

find is used to find files in specified directories that meet certain conditions. For example:

find . -type d -name "*lib*" find all directories (not files) starting from the current one
(.) whose name contain "lib".

locate is less powerful than find but much faster since it relies on a database that is
updated on a daily base or manually using the command updatedb . For example: locate -
i foo finds all files or directories whose name contains foo ignoring case.

39 / 58

Quotes
Double quotes may be used to identify a string where the variables are interpreted. Single quotes
identify a string where variables are not interpreted. Check the output of the following commands

a=yes
echo "$a"
echo '$a'

The output of a command can be converted into a string and assigned to a variable for later reuse:

list=`ls -l` # Or, equivalently:
list=$(ls -l)

40 / 58

Processes
Run a command in background: ./my_command &

Ctrl-Z suspends the current subprocess.

jobs lists all subprocesses running in the background in the terminal.

bg %n reactivates the -th subprocess and sends it to the background.

fg %n brings the -th subprocess back to the foreground.

Ctrl-C terminates the subprocess in the foreground (when not trapped).

kill pid sends termination signal to the subprocess with id pid . You can get a list of the
most computationally expensive processes with top and a complete list with ps aux
(usually ps aux is filtered through a pipe with grep)

All subprocesses in the background of the terminal are terminated when the terminal is closed
(unless launched with nohup , but that is another story...)

41 / 58

How to get help
Most commands provide a -h or --help flag to print a short help information:

find -h

man command prints the documentation manual for command.

There is also an info facility that sometimes provides more information: info command .

42 / 58

Introduction to git

43 / 58

Version control
Version control, also known as source control, is the practice of tracking and managing changes to
software code. Version control systems are software tools that help software teams manage
changes to source code over time.

git is a free and open-source version control system, originally created by Linus Torvalds in
2005. Unlike older centralized version control systems such as SVN and CVS, Git is distributed:
every developer has the full history of their code repository locally. This makes the initial clone of
the repository slower, but subsequent operations dramatically faster.

44 / 58

How does git work?
1. Create (or find) a repository with a git hosting

tool (an online platform that hosts you project,
like GitHub or Gitlab).

2. git clone (download) the repository.

3. git add a file to your local repo.

4. git commit (save) the changes, this is a local
action, the remote repository (the one in the
cloud) is still unchanged.

5. git push your changes, this action
synchronizes your version with the one in the
hosting platform.

45 / 58

https://github.com/
https://gitlab.com/

How does git works? (Collaborative)
If you and your teammates work on different files the workflow is the same as before, you just
have to remember to pull the changes that your colleagues made.

If you have to work on the same files, the best practice is to create a new branch , which is a
particular version of the code that branches form the main one. After you have finished working on
your feature you merge the branch into the main.

main

person1

person2

0-
2a
ae
41
3

1-
e8
47
e7
2

2-
af7
22
7c

3-
ea
5fd
9e

4-
4e
1e
6f1

6-
2d
a7
fd9

7-
cfc
c5
e9

9-
0fa
f5b
d

10
-9
a8
bff
4

46 / 58

Other useful git commands
git diff shows the differences between your code and the last commit.

git status lists the status of all the files (e.g. which files have been changed, which are
new, which are deleted and which have been added).

git log shows the history of commits.

git checkout switches to a specific commit or brach.

git stash temporarily hides all the modified tracked files.

An excellent visual cheatsheet can be found here .

47 / 58

https://ndpsoftware.com/git-cheatsheet.html

SSH authentication
1. Sign up for a GitHub account.

2. Create a SSH key .

3. Add it to your account .

4. Configure your machine:

git config --global user.name "Name Surname"
git config --global user.email "name.surname@email.com"

See here for more details on SSH authentication.

48 / 58

https://github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=linux
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process

The course repository
Clone the course repository:

git clone git@github.com:pcafrica/hpc_for_data_science_2023-2024.git

Before every lecture, download the latest updates by running:

git pull origin main

from inside the cloned folder.

49 / 58

Exercises

50 / 58

Exercise 1: basic Bash commands
Perform the following tasks in your command-line terminal.

1. Navigate to your home folder.

2. Create a folder named test1 .

3. Navigate to test1 and create a new directory test2 .

4. Navigate to test2 and go up one directory.

5. Create the following files: f1.txt , f2.txt , f3.dat , f4.md , README.md , .hidden .

6. List all files (including hidden ones).

7. List only .txt files.

8. Move README.md to folder test2 .

9. Move all .txt files to test2 in one command.

10. Remove f3.dat .

11. Remove all contents of test1 and the folder itself in one command. 51 / 58

Exercise 2: dataset exploration
You can access an open dataset of logs collected from a high-performance computing cluster at
the Los Alamos National Laboratories. The dataset is available on this webpage .

To download the dataset using wget , run the following command:

wget https://raw.githubusercontent.com/logpai/loghub/master/HPC/HPC_2k.log_structured.csv

After downloading the dataset, perform the following analyses using only Bash commands.

1. Find out how many unique node names are present in the dataset.

2. Export the list from the previous point to a file named nodes.log

3. Determine the number of times the "unavailable" event (E13) has been reported.

4. Identify the number of unique nodes that have reported either event E32 or event E33.

5. Calculate how many times the node "gige7" has reported a critical event (E15).

6. Find out how many times the "node-2" node has been reported in the logs. 52 / 58

https://github.com/logpai/loghub/tree/master/HPC

Exercise 3: creating a backup script
In this exercise, you'll create a Bash script that automates the process of creating a backup of a
specified directory. The script should accomplish the following tasks:

1. Receive the directory to backup as an input argument.

2. Create a timestamped backup folder inside a specified backup directory.

3. Copy all files and directories from the user-specified directory to the backup folder.

4. Compress the backup folder into a single archive file.

Note: You can use basic commands like read , mkdir , cp , tar , and echo .

Hint: Generate a timestamp in the format YYYYMMDD_hhmmss with date +%Y%m%d_%H%M%S .

53 / 58

Exercise 3: creating a backup script. Instructions
1. Create a new Bash script file named backup.sh .

2. Inside the script, use basic Bash commands to implement the following steps:
i. Prompt the user to enter the directory they want to back up.

ii. Create a timestamped backup folder (e.g., backup_<timestamp>) inside a specified
backup directory (you can define this directory at the beginning of your script).

iii. Copy all files and directories from the user-specified directory to the backup folder.

iv. Compress the backup folder into a single archive file backup_<timestamp>.tar.gz .

v. Display a message indicating the successful completion of the backup process.

3. Test your script by running it in your terminal. Ensure it performs all the specified tasks
correctly.

4. (Bonus) Implement error handling in your script. For example, check if the specified input
directory exists.

54 / 58

Exercise 4: hands on git . Collaborative file
management (1/3)

1. Form groups of 2-3 members.

2. Designate one member to create a new repository (visit https://github.com/ and click the +
button in the top right corner), and ensure everyone clones it.

3. In a sequential manner, each group member should create a file with a distinct name and
push it to the online repository while the remaining members pull the changes.

4. Repeat step 3, but this time, each participant should modify a different file than the ones
modified by the other members of the group.

55 / 58

https://github.com/

Exercise 4: hands on git . Collaborative file
management (2/3)
Now, let's work on the same file, main.cpp . Each person should create a hello world main.cpp
that includes a personalized greeting with your name. To prevent conflicts, follow these steps:

1. Create a unique branch using the command: git checkout -b [new_branch] .

2. Develop your code and push your branch to the online repository.

3. Once everyone has finished their work, merge your branch into the main branch using the
following commands:

git checkout main
git pull origin main
git merge [new_branch]
git push origin main

56 / 58

Exercise 4: hands on git . Collaborative file
management (3/3)
How to deal with git conflicts
The first person to complete this process will experience no issues. However, subsequent
participants may encounter merge conflicts.

Git will mark the conflicting sections in the file. You'll see these sections surrounded by <<<<<<< ,
======= , and >>>>>>> markers.

Carefully review the conflicting sections and decide which changes to keep. Remove the conflict
markers (<<<<<<< , ======= , >>>>>>>) and make the necessary adjustments to the code to
integrate both sets of changes correctly.

After resolving the conflict, commit your changes and push your resolution to the repository.

57 / 58

 Warning:
Please get your laptop and your Ulysses account
ready by Wednesday!

58 / 58

	Page 1
	Lecture 01
	A day in the life of a software developer
	High Performance Computing for Data Science - SISSA, 2023-2024
	Pasquale Claudio Africa, Konstantin Karchev
	22 Apr 2024

	Page 2
	Course overview

	Page 3
	Practical info
	Course material

	Page 4
	Practical info
	Questions?

	Page 5
	Objectives and expectations
	Required skills

	Page 6
	Laptop configuration
	Requirements

	Page 7
	Windows users
	macOS users
	Linux users

	Page 8
	Popularity of programming languages

	Page 9
	Curated lists of awesome C++ and Python frameworks, libraries, resources, and shiny things.
	awesome-cpp
	awesome-python
	awesome-scientific-python
	awesome-scientific-computing

	Page 10
	Outline

	Page 11
	The build process: Preprocessor, Compiler, Linker, Loader

	Page 12
	Compiled vs. interpreted languages

	Page 13
	The build process

	Page 14
	Preprocessor
	Preprocessor directives
	Macros

	Page 15
	Compiler
	Compilation process
	Common compiler options

	Page 16
	Linker
	Linking process
	Static vs. dynamic linking

	Page 17
	Loader
	Loading process
	Dynamic linking at runtime

	Page 18
	Introduction to the UNIX shell

	Page 19
	What is a shell?

	Page 20
	What is Bash?

	Page 21
	Variables and environmental variables

	Page 22
	Types of shell (login vs. non-login)

	Page 23
	Types of shell (interactive vs. non-interactive)

	Page 24
	Bash as a command line interpreter

	Page 25
	Initialization files

	Page 26
	Initialization files

	Page 27
	Getting started

	Page 28
	Basic Bash commands

	Page 29
	Basic Bash commands

	Page 30
	Not all commands are equals

	Page 31
	Run a script

	Page 32
	Built-in commands

	Page 33
	Other commands

	Page 34
	A warning about filenames

	Page 35
	More commands

	Page 36
	Redirection, pipelines and filters

	Page 37
	Advanced commands

	Page 38
	Advanced commands

	Page 39
	Advanced commands

	Page 40
	Quotes

	Page 41
	Processes

	Page 42
	How to get help

	Page 43
	Introduction to git

	Page 44
	Version control

	Page 45
	How does git work?

	Page 46
	How does git works? (Collaborative)

	Page 47
	Other useful git commands

	Page 48
	SSH authentication

	Page 49
	The course repository

	Page 50
	Exercises

	Page 51
	Exercise 1: basic Bash commands

	Page 52
	Exercise 2: dataset exploration

	Page 53
	Exercise 3: creating a backup script

	Page 54
	Exercise 3: creating a backup script. Instructions

	Page 55
	Exercise 4: hands on git. Collaborative file management (1/3)

	Page 56
	Exercise 4: hands on git. Collaborative file management (2/3)

	Page 57
	Exercise 4: hands on git. Collaborative file management (3/3)
	How to deal with git conflicts

	Page 58
	⚠️ Warning: Please get your laptop and your Ulysses account ready by Wednesday!

