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The role of Python in modern scientific
computing
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The role of Python in modern scientific computing
Python has emerged as a pivotal language in scientific computing, distinguished by:

Intuitive and readable syntax, making coding accessible to scientists from various fields.

A vast array of libraries and tools tailored for scientific applications.

The power of Python in scientific computing is amplified by its extensive library ecosystem:

NumPy and SciPy are fundamental for numerical computations.

pandas enhances data manipulation and analysis capabilities.

Matplotlib and Seaborn excel in creating scientific visualizations.

TensorFlow and PyTorch are at the forefront of machine learning research and applications.

Python's role in democratizing scientific research is underscored by its open-source nature,
fostering collaboration and innovation.
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Some real-world applications of Python in scientific
research
Python's impact in scientific research is evident through numerous real-world applications:

In physics, it has been used to analyze data from the Large Hadron Collider.

In biology, Python is integral in genome sequencing projects like the Human Genome Project.

Environmental scientists utilize Python in modeling the effects of climate change on different
ecosystems.

In astronomy, it played a key role in processing the first image of a black hole.

...
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How to get your system ready
Most Python libraries can be installed with pip , with Conda , with a package manager on Linux
and macOS, or from source.

Using pip :

pip install numpy scipy matplotlib seaborn pandas

Using Conda :

conda create -n sci-env
conda activate sci-env
conda install numpy scipy matplotlib seaborn pandas

Best practices in setting up a scientific computing environment include creating isolated
environments and maintaining updated library versions.
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Modules
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Modules: reusable code in Python
In Python, the ability to reuse code is facilitated by modules. A module is a file with a .py
extension that contains functions and variables. There are various methods to write modules,
including using languages like C to create compiled modules.

When importing a module, to enhance import performance, Python creates byte-compiled files
( __pycache__/filename.pyc ). These files, platform-independent and located in the same
directory as the corresponding .py  files, speed up subsequent imports by storing preprocessed
code.
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Using Standard Library Modules
You can import modules in your program to leverage their functionality. For instance, consider the
sys  module in the Python standard library. Below is an example:

# Example: module_using_sys.py
import sys

print("Command line arguments:", sys.argv)

When executed, this program prints the command line arguments provided to it. The sys.argv
variable holds these arguments as a list. For instance, running python module_using_sys.py we 
are arguments  results in sys.argv[0]  being 'module_using_sys.py' , sys.argv[1]  being
'we' , sys.argv[2]  being 'are' , and sys.argv[3]  being 'arguments' .
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The from... import...  Statement
You can selectively import variables from a module using the from... import...  statement.
However, it's generally advised to use the import  statement to avoid potential name clashes and
enhance readability.

from math import sqrt
print("Square root of 16 is", sqrt(16))

A special case is from math import * , where all symbols exported by the math  module are
imported.
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A module's __name__
Every module has a __name__  attribute that indicates whether the module is being run
standalone or imported. If __name__  is '__main__' , the module is being run independently.

# Example: module_using_name.py
if __name__ == '__main__':
    print("This module is being run independently.")
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Creating your own modules
Creating modules is straightforward: every Python program is a module!
Save it with a .py  extension. For example:

# Example: mymodule.py
def say_hi():
    print("Hello, this is mymodule speaking.")
    
__version__ = '1.0'

Now, you can use this module in another program:

# Example: mymodule_demo.py
import mymodule

mymodule.say_hi()
print("Version:", mymodule.__version__)
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The dir  function
The built-in dir()  function lists all symbols defined in an object. For a module, it includes
functions, classes, and variables. It can also be used without arguments to list names in the
current module.

# Example: Using the dir function.
import sys

# Names in sys module.
print("Attributes in sys module:", dir(sys))

# Names in the current module.
print("Attributes in current module:", dir())
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Packages
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Packages: organizing modules hierarchically
Packages are folders of modules with a special __init__.py  file, indicating that the folder
contains Python modules. They provide a hierarchical organization for modules.

<some folder in sys.path>/
└── datascience/
    ├── __init__.py
    ├── preprocessing/
    │   ├── __init__.py
    │   ├── cleaning.py
    │   └── scaling.py
    └── analysis/
        ├── __init__.py
        ├── statistics.py
        └── visualization.py
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The __init__.py  files (1/5)
The __init__.py  file in a Python package serves multiple purposes. It's executed when the
package or module is imported, and it can contain initialization code, set package-level variables,
or define what should be accessible when the package is imported using from package import 
* .

Here are some common examples of using __init__.py  files.
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The __init__.py  files (2/5)

1. Initialization code

# __init__.py in a package.

# Initialization code to be executed when the package is imported.
print("Initializing my_package...")

# Define package-level variables.
package_variable = 42

# Import specific modules when the package is imported.
from . import module1
from . import module2

In this example, the __init__.py  file initializes the package, sets a package-level variable
( package_variable ), and imports specific modules from the package.
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The __init__.py  files (3/5)

2. Controlling from package import *

# __init__.py in a package.

# Define what should be accessible when a user writes 'from package import *'.
__all__ = ['module1', 'module2']

# Import modules within the package.
from . import module1
from . import module2

By specifying __all__ , you explicitly control what is imported when using from package 
import * . It's considered good practice to avoid using *  imports, but if you need to, this can help
manage what gets imported.

The .  symbol means that module1.py  and module2.py  are to be located in the same folder as
the __init.py__  file.
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The __init__.py  files (4/5)

3. Lazy loading

# __init__.py in a package.

# Initialization code.
print("Initializing my_lazy_package...")

# Import modules only when they are explicitly used.
def lazy_function():
    from . import lazy_module
    lazy_module.do_something()

In this example, the module is initialized only when the lazy_function  is called. This can be
useful for performance optimization, especially if some modules are rarely used.
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The __init__.py  files (5/5)

4. Setting package-level configuration

# __init__.py in a package.

# Configuration settings for the package.
config_setting1 = 'value1'
config_setting2 = 'value2'

You can use the __init__.py  file to set package-level configuration settings that can be
accessed by modules within the package.
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Python modules as 1. scripts vs. 2. pre-compiled
libraries
In Python, modules and packages can be implemented either as Python scripts or as pre-
compiled dynamic libraries. Let's explore both concepts:

1. Python modules as scripts:

Extension: Modules implemented as scripts usually have a .py  extension.

Interpretation: The Python interpreter reads and executes the script line by line.

Readability: Scripts are human-readable and editable using a text editor.

Flexibility: This is the most common form of Python modules. You can write and modify
the code easily.

Portability: Python scripts can be easily shared and run on any system with a
compatible Python interpreter.
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2. Python modules as dynamic libraries
Compilation: Modules can be pre-compiled into shared libraries for performance
optimization.

Execution: The compiled code is loaded into memory and executed by Python.

Protection of intellectual property: Pre-compiled modules can be used to distribute
proprietary code without exposing the source.

Performance: Pre-compiled modules may offer better performance as they are already in
machine code.

It's essential to note that Python itself is an interpreted language, and even when using pre-
compiled modules, the Python interpreter is still involved in executing the code. The use of pre-
compiled modules is more about optimizing performance and protecting source code than altering
the fundamental nature of Python as an interpreted language.

You can use tools like Cython or PyInstaller to generate pre-compiled modules or standalone
executables, respectively, depending on your specific use case and requirements. 23 / 57



The Python Standard Library
Python’s standard library  is very extensive, offering a wide range of facilities as indicated by the

long table of contents listed on the website. The library contains built-in modules (written in C) that
provide access to system functionality such as file I/O that would otherwise be inaccessible to
Python programmers, as well as modules written in Python that provide standardized solutions for
many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away
platform-specifics into platform-neutral APIs.

In addition to the standard library, there is an active collection of hundreds of thousands of
components (from individual programs and modules to packages and entire application
development frameworks), available from the Python Package Index .
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Zen of Python:
"Explicit is better than implicit."
Run import this  in Python to learn more.
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Dependency management
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Questions
1. Code longevity: How do you ensure that your code will still function as expected in one year,

or even five? Consider the implications of using libraries such as Numpy, TensorFlow, or
packages from sources like GitHub.

2. Consistent results: How can you guarantee that both your current and future collaborators
are able to achieve the same computational results as you?

3. Easy installation: What steps can you take to simplify the process for collaborators to set up
your code with all required dependencies?

4. Reproducibility: What measures can you implement to make it straightforward for colleagues
to reproduce your results accurately?

5. Managing multiple projects: How can you effectively manage multiple projects that have
differing and potentially conflicting dependencies?
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Objectives
1. Recording dependencies: Master the process of documenting all dependencies required by

your project.

2. Communicating dependencies: Develop the skill to clearly list and explain these
dependencies in reports, theses, or publications.

3. Using isolated environments: Learn to utilize isolated environments to manage different
projects without interference from conflicting dependencies.

4. Simplifying script usage: Enhance the ease of using and reusing scripts and projects to
streamline workflows and improve efficiency.
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PyPI (The Python Package Index)
Installation tool: pip

Usage summary: PyPI is primarily used for Python-only packages or Python interfaces to
external libraries. It also hosts packages that include bundled external libraries, such as
numpy.

Number of packages: Extensive, with long-term support for older versions.

Handling libraries: Dependencies on external libraries require either inclusion in the package
or installation through other means (e.g., OS installers or manual setup).

Pros:
User-friendly interface.

Simplified package creation process.

Cons:
Installation of packages with external dependencies can be complex.
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Conda
Installation tool: Conda or its faster alternative, Mamba.

Usage summary: Conda serves as a broader distribution tool, aimed at managing not just
Python packages but also the libraries and tools they depend on. This is particularly valuable
for scientific software that relies on external libraries for enhanced performance.

Number of packages: A curated selection in the default channel, with a vast array in
community-managed channels. Non-Conda packages can also be installed using pip.

Handling libraries: External libraries are installed as distinct Conda packages.

Pros:
Relatively easy to use.

Facilitates management of complex dependencies involving external libraries.

Cons:
More complex package creation process.
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Isolated environments
Isolated environments are crucial for managing software dependencies in project development,
especially when working with complex or conflicting package requirements. Here's how they help:

Version specificity: Install exact versions of packages required for your projects, ensuring
consistency and compatibility across development stages.

Project isolation: Each project can have its own separate environment. This prevents
conflicts that arise when different projects need different versions of the same package.

Error recovery: Mistakes during installation (such as installing incorrect packages) are easily
rectifiable. Simply remove the compromised environment and set up a new one, starting
afresh with correct specifications.

Result replication: By exporting a list of packages from an environment, you can share a
consistent setup with collaborators or replicate it in different setups. This facilitates
consistency in results across different systems.
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Isolated environments: examples
Conda

conda create --name python310-env python=3.10 numpy=1.24.3 matplotlib=3.7.2
conda activate python310-env
# Develop and run your Python code...
conda deactivate

Virtual environments

python3 -m venv scicomp
source scicomp/bin/activate
pip install numpy==1.24.3
pip install matplotlib==3.7.2
# Develop and run your Python code...
deactivate
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Recording dependencies (1/2)
For effective management and replication of Python environments, recording dependencies is
essential. There are two primary methods used to achieve this: requirements.txt  for pip and
environment.yml  for Conda.

requirements.txt

This is a straightforward text file used by pip with virtual environments. It lists the packages your
project depends on. Here’s a basic example:

numpy
matplotlib
pandas
scipy
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Recording dependencies (2/2)
environment.yml

Used by Conda, this YAML file provides a structured format to specify the name of the
environment, the channels from which packages should be sourced, and the dependencies
themselves. Example:

name: my-environment
channels:
  - defaults
dependencies:
  - numpy
  - matplotlib
  - pandas
  - scipy
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Pinning dependencies
requirements.txt :

numpy==1.18.5
matplotlib==3.3.1
pandas==1.1.3
scipy==1.5.2

environment.yml :

name: my-environment
channels:
  - defaults
dependencies:
  - numpy=1.18.5
  - matplotlib=3.3.1
  - pandas=1.1.3
  - scipy=1.5.2
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Additional resources
Dependency management .

Packaging .
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Introduction to Docker
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What is Docker?
Docker is a platform for developing, shipping, and running applications inside containers. Docker
provides an isolated environment for your application and its dependencies, packaged into a
Docker container. This container can run on any machine that has Docker installed, making it easy
to ensure consistency across development, testing, and production environments.
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Docker images vs. containers
Docker image: A Docker image is a lightweight, standalone, executable package that
includes everything needed to run a piece of software, including the code, a runtime, libraries,
environment variables, and config files.

Docker container: A container is a runtime instance of an image. When you run an image,
you create a container from it. This is the process where the Docker engine takes the image,
adds a writable layer on top, and initializes various settings (network ports, storage options,
etc.).
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Benefits of using Docker
Consistency across environments: Docker containers ensure that your application behaves
the same way in production as it does in development and testing.

Isolation: Containers are isolated from each other and the host system, ensuring that
processes do not interfere with each other.

Portability: Containers can run on any desktop, traditional IT, or cloud infrastructure.

Microservices architecture: Docker is ideal for microservices architecture, allowing each
service to be contained in its own environment with its dependencies.

Scalability and efficiency: Docker uses resources more efficiently, allowing you to quickly
scale out your application as needed.
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Using a Docker image (1/2)
# Pull the image.
docker pull python:latest

# Create a container.
docker run --name my_container -v /path/to/host/folder:/shared-folder -it -d python:latest

# Enable the container.
docker start my_container

# Use the container.
docker exec -it my_container /bin/bash
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Using a Docker image (2/2)
You can leave the container and return to your OS with exit . You can check your containers and
their status with the command

docker ps -a

If the status of the container is Up , you can stop it with

docker stop my_container

Once you have created your container remember to do not use again the commad run  but just
start . Otherwise you will create every time a new container. If you want to remove a container

you can run:

docker rm <name-of-the-container>
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Basic Docker commands
Here are some basic Docker commands to get you started:

docker run : Run a container from an image.

docker build : Build an image from a Dockerfile.

docker images : List all locally stored Docker images.

docker ps : List running containers.

docker pull : Pull an image or a repository from a registry.

docker push : Push an image or a repository to a registry.

docker rm : Remove one or more containers.

docker rmi : Remove one or more images.

docker logs : Fetch the logs of a container.
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Creating a Docker image/container
A Dockerfile is a text document that contains all the commands a user could call on the command
line to assemble an image. Using docker build  users can create an automated build that
executes several command-line instructions in succession.

Structure of a Dockerfile

FROM: Sets the base image for subsequent instructions. A valid Dockerfile must start with a
FROM instruction.

RUN: Executes commands in a new layer on top of the current image and commits the
results.

COPY: Copies new files or directories from source and adds them to the filesystem of the
container at the destination.

CMD: Provides defaults for executing a container. There can be only one CMD instruction in a
Dockerfile.

ENV: Sets the environment variable <key>  to the value <value> . 44 / 57



Building a Docker image: example
# Start from a Python base image.
FROM python:3.8

# Install required libraries.
RUN pip install numpy pandas scikit-learn

# Add the project code to the container.
COPY . /app

# Set the working directory.
WORKDIR /app

# Specify the command to run the application.
CMD ["python", "./my_script.py"]

Then:

docker build -t my_image:version .
docker push my_image:version # If needed.
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Best practices for efficient Docker images
Minimize the number of layers: Combine similar commands into a single RUN  statement.

Clean up after installs: Remove unnecessary cache files.

Use .dockerignore : Exclude files not relevant to the build (like data files).

Multi-stage builds: Use multi-stage builds to keep the image size down by building in one
stage and copying the necessary artifacts to another.
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Continuous Integration/Continuous Deployment
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What is CI/CD?
CI/CD stands for Continuous Integration and Continuous Deployment or Continuous Delivery.
These concepts are fundamental to modern software development practices and are aimed at
improving the quality of software and the speed of its delivery.

CI/CD is a method to frequently deliver apps to customers by introducing automation into the
stages of app development.
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Continuous Integration (CI)
Continuous Integration is the practice of merging all developers' working copies to a shared
mainline several times a day. The main goal of CI is to provide quick feedback so that if a defect is
introduced into the code base, it can be identified and corrected as soon as possible. CI helps in
reducing the time and effort required for integrating changes made by different team members
over time. In CI, automated tools are used to assert the new code’s correctness before integration.
A source code version control system is the crux of the CI process. The version control system is
also supplemented with other checks like syntax style review tools, other code analyzers, and
code tests.

Key components of CI include:

Automated testing: Running automated tests to ensure each integration meets the required
standards.

Version control: All code changes are integrated into a shared version control repository
which helps in tracking changes and managing codebase. 49 / 57



Continuous Deployment (CD)
Continuous Deployment refers to the release into production of software that passes the
automated tests. Essentially, every change that passes all stages of your production pipeline is
released to your customers with no manual intervention, and only a failed test will prevent a new
change to be deployed.

Key components of CD include:

Automated release process: Enabling developers to deploy their changes to a production
environment or to release to end-users at any time by clicking a button.

No human intervention: Software changes are automatically deployed to production without
explicit approval.

Instant rollback: Capabilities to quickly revert to a previous version in case of a problem.
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Benefits of CI/CD
1. Faster release rate: Frequent releases mean features reach customers quicker.

2. Improved product quality: Regular code testing and deployment reduce the risk of major
issues in production.

3. Efficient handling of issues: Immediate feedback allows for quick fixes to bugs and issues.

4. Reduced manual work: Automation in testing and deployment reduces the workload on team
members and reduces human errors.

5. Enhanced team productivity: Streamlined processes enable team members to focus on
other productive activities.

CI/CD is a transformative practice that improves the speed and quality of software development
and deployment. It emphasizes the importance of automation in building, testing, and deployment
processes, which helps teams to release software changes more quickly and with confidence.
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GitHub Actions
GitHub Actions is a CI/CD platform that allows automation of workflows based on GitHub
repository events like push, pull requests, or issue creations. It's directly integrated into GitHub,
making it an excellent tool for automating the testing and deployment of code hosted on GitHub.

Assumptions

You have a Python application with a requirements.txt  file.

Your application incorporates a testsuite to make sure that new changes do not break existing
functionalities.

Your application's documentation is generated using Sphinx or another documentation tool.

You have a GitHub repository set up for your project.
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Workflow setup
1. Choose a pre-existing Docker image:

For Python applications, the official Python Docker images can be used. These are available
on Docker Hub and include various tags corresponding to Python versions. Of course, you
can even use your custom built Docker image.

2. Create a GitHub Actions workflow:
This example will use a GitHub Actions workflow to automate the testing with pytest and
documentation generation with Sphinx.

3. Workflow file:
Create a workflow file .github/workflows/python-app.yml , specifying the conditions under
which to execute the action(s) and which command(s) define an action.
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Workflow file (1/2)
name: Python Application CI

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  test-and-document:
    runs-on: ubuntu-latest

    container:
      image: python:3.8-slim
      options: --user 1001:1001

    steps:
    - name: Checkout repository
      uses: actions/checkout@v2

    - name: Set up Python environment
      run: |
        python -m venv venv
        . venv/bin/activate
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Workflow file (2/2)
    - name: Install dependencies
      run: |
        pip install -r requirements.txt
        pip install pytest sphinx

    - name: Run tests
      run: |
        . venv/bin/activate
        pytest

    - name: Generate documentation
      run: |
        . venv/bin/activate
        cd docs
        sphinx-build -b html . _build/html

    - name: Upload documentation
      uses: actions/upload-artifact@v2
      with:
        name: documentation
        path: docs/_build/html/
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Explanation of key components
1. Container image: The workflow runs in a container based on the python:3.8-slim  image.

This ensures that Python and any necessary system dependencies are already installed.

2. Setup Python environment: A virtual environment is set up within the container to isolate our
project dependencies.

3. Install dependencies: Dependencies listed in requirements.txt  are installed, along with
pytest  for testing and sphinx  for documentation.

4. Run tests: Tests are executed using pytest . This step can be expanded with more specific
commands depending on the structure of your test suite.

5. Generate documentation: Sphinx is used to generate HTML documentation from source
files located in the docs  directory. Adjust the sphinx-build  command according to your
Sphinx configuration.

6. Upload documentation: The generated HTML files are uploaded as an artifact on GitHub.
These can be downloaded from the Actions tab after the workflow runs or published as static
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Additional resources
Testing and documenting Python code: see lecture notes.

Productivity tools .

More about unit testing in Python .
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